. Знайти сторону ромба, якщо його діагоналі відносяться як 3: 4, а площа дорівнює 24 дм. Рішення. Розглянемо ромб ABCD (рис. 1).
PSP = 1/2 g BD g AC. AC / BD = 3/4 за умовою задачі, тому AC = 3/4 g BD або
24 = 1/2 g BD g AC. Підставивши значення, маємо, 24 = 3/8 g BD.
), А BD = 8 дм. АС = 3 g 8/4 = 6 (дм). ВО = BD / 2 = 4 дм, АТ = АС / 2 = 3 дм,), а значить АВ = 5 дм.
Відповідь: АВ = 5 дм. Завдання 2. Діагоналі ромба дорівнюють 48 см і 14 см. Знайти його бік і радіус вписаного кола. Рішення. Розглянемо ромб ABCD, діагоналі якого перетинаються в точці О (рис.
2). У ромба діагоналі точкою перетину діляться навпіл, тому маємо:
AО = AC / 2 = 7 cм, BО = BD / 2 = 24 см. Трикутник AОB прямокутний, так як діагоналі ромба взаємно перпендикулярні. = 49 + 576, АВ = 625, значить АВ = 25 см.
Так як OМ перпендикулярно АВ, то Крім того, знаючи, що PSP = 2 grga, де r радіус вписаного кола, а сторона ромба, маємо: r = 336/50 = 6, 72 (см). Відповідь: 25 см, 6, 72 см. Завдання 3. Знайти діагоналі ромба, якщо одна з них в 1, 5 рази більше іншої, а площа ромба дорівнює 27см. Рішення.
Розглянемо два вирішення даної задачі (рис. 1). 1-ий б. ВD = 1, 5 g АС; ВО = 1, 5 g АС / 2. = 0, 5 g ВD g AC.
Підставами в формулу відомі величини: 27 = 1/2 g 1, 5 g АС g АС; 27 = 0, 75 g АС = 27: 0, 75 = 36 (см), значітАС = 6 см, ВD = 1, 5 g 6 = 9 (см). 2-й б. (За умовою задачі).
Нехай АС = х, ВD = 1, 5х, тоді 1/2 g х g 1, 5х = 27; = 36, тому х = 6 см. BD = 1, 5 g 6 = 9 (см).
Відповідь: АС = 6 см, ВD = 9 см. Задача 4. Знайти сторону і площа ромба, якщо його діагоналі рівні 10 см і 24 см.
Рішення. ). ) (По властивості сторін і діагоналей ромба), тому АВ = 13 см.
АВ = ВС = СD = АD = 13 см. Відповідь: АВ = 13 см, PSP = 120 см.
Задача 5. Діагоналі ромба дорівнюють 18 м і 24 м. Знайти периметр ромба і відстань між паралельними сторонами. Рішення. Розглянемо ромб ABCD, його діагоналі перетинаються в точці О (рис. 3). АВ = 15 м. Нехай ЕF висота. ). Крім того PSP = agh, тому 216 = 15 gh, а значить h = 216/15 = 14, 4 м. Відповідь: Р = 60 м; ЕF = 14, 4. Залишилися питання?
Nyusha was walking along the shore with her friend Barashko. They bathed in the sea and launched boats there. And suddenly an iron monster came out of the water. They ran after the tree and look that it was not a monster and Pin invented a submarine. Nyusha and Barash wanted to sail to the bottom of the sea with the help of this vessel. Ping said that you are still young, you are still early, as a teenager, we will not only sail on a submarine ...
Перевод :Нюша гуляла у берега со своим другом Барашком. Они купались в море и запускали там кораблики. И вдруг из воды вылез железный монстр. Они убежали за дерево и смотрят что это был не монстр а Пин изобрел подводную лодку. Нюше и Барашу захотелось поплыть на дно моря с этого судна. Пин сказал что вы ещё маленькие , вам ещё рано, как подростете, мы не только будем плавать на подводной лодке...
Владимир - один из самых древних городов на Руси. Считается, что основал его в 990 году князь Владимир Святославович, а Владимир Мономах укрепил его в 1108 году. Почти 300 лет Владимир был столицей Северо-Восточной Руси. В 1238 году город сожгли и разграбили монголо-татары. Расположен Владимир в 180 км от Москвы. Он является административным центром Владимирской области. В культурно-историческом плане Владимиру может позавидовать любой другой город. Среди множества памятников, три из них под охраной ЮНЕСКО. Это Дмитриевский и Успенский соборы, а также Золотые Ворота. Маршрут "Золотое кольцо" начинается именно во Владимире. С давних времен и до сегодняшних дней в городе традиционно живет и работает много писателей, музыкантов, художников и других деятелей культуры.
. Знайти сторону ромба, якщо його діагоналі відносяться як 3: 4, а площа дорівнює 24 дм. Рішення. Розглянемо ромб ABCD (рис. 1).
PSP = 1/2 g BD g AC. AC / BD = 3/4 за умовою задачі, тому AC = 3/4 g BD або
24 = 1/2 g BD g AC. Підставивши значення, маємо, 24 = 3/8 g BD.
), А BD = 8 дм. АС = 3 g 8/4 = 6 (дм). ВО = BD / 2 = 4 дм, АТ = АС / 2 = 3 дм,), а значить АВ = 5 дм.
Відповідь: АВ = 5 дм. Завдання 2. Діагоналі ромба дорівнюють 48 см і 14 см. Знайти його бік і радіус вписаного кола. Рішення. Розглянемо ромб ABCD, діагоналі якого перетинаються в точці О (рис.
2). У ромба діагоналі точкою перетину діляться навпіл, тому маємо:
AО = AC / 2 = 7 cм, BО = BD / 2 = 24 см. Трикутник AОB прямокутний, так як діагоналі ромба взаємно перпендикулярні. = 49 + 576, АВ = 625, значить АВ = 25 см.
Так як OМ перпендикулярно АВ, то Крім того, знаючи, що PSP = 2 grga, де r радіус вписаного кола, а сторона ромба, маємо: r = 336/50 = 6, 72 (см). Відповідь: 25 см, 6, 72 см. Завдання 3. Знайти діагоналі ромба, якщо одна з них в 1, 5 рази більше іншої, а площа ромба дорівнює 27см. Рішення.
Розглянемо два вирішення даної задачі (рис. 1). 1-ий б. ВD = 1, 5 g АС; ВО = 1, 5 g АС / 2. = 0, 5 g ВD g AC.
Підставами в формулу відомі величини: 27 = 1/2 g 1, 5 g АС g АС; 27 = 0, 75 g АС = 27: 0, 75 = 36 (см), значітАС = 6 см, ВD = 1, 5 g 6 = 9 (см). 2-й б. (За умовою задачі).
Нехай АС = х, ВD = 1, 5х, тоді 1/2 g х g 1, 5х = 27; = 36, тому х = 6 см. BD = 1, 5 g 6 = 9 (см).
Відповідь: АС = 6 см, ВD = 9 см. Задача 4. Знайти сторону і площа ромба, якщо його діагоналі рівні 10 см і 24 см.
Рішення. ). ) (По властивості сторін і діагоналей ромба), тому АВ = 13 см.
АВ = ВС = СD = АD = 13 см. Відповідь: АВ = 13 см, PSP = 120 см.
Задача 5. Діагоналі ромба дорівнюють 18 м і 24 м. Знайти периметр ромба і відстань між паралельними сторонами. Рішення. Розглянемо ромб ABCD, його діагоналі перетинаються в точці О (рис. 3). АВ = 15 м. Нехай ЕF висота. ). Крім того PSP = agh, тому 216 = 15 gh, а значить h = 216/15 = 14, 4 м. Відповідь: Р = 60 м; ЕF = 14, 4. Залишилися питання?