Пошаговое объяснение:
1)
Якщо зовнішній кут трикутника дорівнює сумі двох інших кутів не суміжних з ним , тоді згідно умови один із внутрішніх кутів трикутника дорівнює 40° , ⇒ суміжні кути 180 - 125=55°
180 - (40 + 55) = 85°
Відповідь: 40° 55° 85°
2)
Якщо сума двох кутів дорівнює 150° то третій кут дорівнює
180 - 150 = 30°
Зовнішній кут трикутника дорівнює сумі двох внутрішніх не суміжних із ним кутів звідси маємо:
отже ∠1 + ∠3=80° ⇒ ∠1 = 80-∠3 = 80 - 30 =50°
∠2 = 150° - ∠1 = 150° -50° = 100°
Відповідь : 30° 50° 100°
ответ: k= (20^13-7)/13
Можно посчитать и проверить:
k=6301538461538461
Пошаговое объяснение:
Все просто . Тк 13 простое число, то если n^2 делиться на 13, то и n делится на 13. Тк 13 можно разбить одним в виде произведения натуральных чисел 13*1 ,то n в любом случае делится на 13. Таким образом задаче удовлетворяют все числа кратные 13. То есть: 13*1 ;13*2 ;13*k
13*k<=20^13
Чтобы найти наибольшее k необходимо отыскать остаток от деления
20^13 на 13
Найдем закономерность чередования остатков 20^m на 13.
Тк остатков ограниченное количество, то рано или поздно остаток повторится с каким то из предыдущих , это и будет период чередования. Умножаем сразу на предыдущий остаток,тк 20*13*f делится на 13 :
20= 13 +7 (-6)
20*7=140= 10*13+10 (10) (-3)
20*10=200= 13*15+5 (5) (-8)
20*5=100=13*7+9 (9) (-4)
20*9=180=13*13+11 (11) (-2)
20*11=220=13*16 +12 (12) (-1)
20*12=240=13*18+6 (-7) (повтор)
Таким образом остатки чередуются по закону:
7,10,5,9,11,12,-7,-10,-5,-9 ,-11,-12,7,10... (период равен 12)
Остаток от деления 13 на 12 равен 1, таким образом остаток от деления
20^13 на 13 равен 7.
Тогда таких чисел:
k= (20^13-7)/13
P.s найдем например остаток от деления:
20^100 на 13
Для этого ищем остаток от деления 100 на 12
100=12*8+4. Таким образом нам нужно 4 число в периоде:
7,10,5,9,11,12,-7,-10,-5,-9 ,-11,-12
Таким образом остаток от деления :
20^100 на 13 равен 9.
Большинство птиц приносят нам пищу!
Благодаря ним мы многое узнали а этом мире!