найдём производную функции f(x)=2x³ -3x² -1
f'(x)=6x² - 6x
6x² - 6x= 0
6x(x -1) = 0
1) 6x = 0
x₁ = 0
2) x -1=0
x₂ = 1
график функции f'(x)=6x² - 6x представляет собой квадратную параболу веточками ввех, следовательно,
при х∈(-∞; 0] f'(x)> 0 ⇒ f(x) возрастает
при х∈[0; 1] f'(x)< 0 ⇒ f(x) убывает
при х∈[1; +∞) f'(x)> 0 ⇒ f(x) возрастает
в точке х = 0 локальный максимум y mах = -1
в точке х =1 локальный минимум y min = 2 -3 -1 = -2
Приведем к общему знаменателю (первую дробь умножим на 22, вторую на 21) :
= 22*22 / 21*22 - 21*21 / 22*21 = (484-441) / 462 = 43 / 462
2) 8 3/4 - 4 = 4 3 /4
3) 1 1/2 - 1/3 = 1 1/6
Переведем 1 1/2 в неправильную дробь (1*2+1) /2 :
= 3/2 - 1/3 =
Приведем к общему знаменателю 6:
= 3*3 /2*3 - 1*2 /2*3 =
= (9-2) /6 = 7/6 = 1 1/6
4) 10 5/8 - 3 5/6 = 6 19/24
Переведем в неправильные дроби: 10 5/8 = (10*8+5) / 8 = 85/8 ,
3 5/6 = (3*6 +5 ) /6 =23/6
Решаем дальше: 85/8 +23 /6 =
Приведем к общему знаменателю 24 , первую дробь *3 , вторую *4:
(85*3) / 8*3 + (23*4) /6*4 =(255-92) / 24= 163/24
Выделим целую часть: 163/24 = 6 19/24
5) 5/12 * 7/8 = 5*7 / 12*8 = 35 / 96