М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nastiaandreeva
nastiaandreeva
14.05.2020 08:43 •  Математика

Найдите обьем куба с ребром 4 метра

👇
Ответ:
omelyanovichni
omelyanovichni
14.05.2020
V=a³
V=4³=64
4,4(25 оценок)
Ответ:
Alenasol1
Alenasol1
14.05.2020
4*4*4=16*4=64 м3.
ответ: 64 м3.
4,8(96 оценок)
Открыть все ответы
Ответ:
EseniyaMaster
EseniyaMaster
14.05.2020
Так так.. 
1) y'=3x^2 - 3;
   y'=0 при 3x^2 - 3 = 0 =>
   => 3x^2=3;
        x^2=1;
        x=+-1;
  Производная y' - есть скорость изменения функции y => 
=> при положительных значениях y' y возрастает, при отрицательных убывает.
y' = 0 - критическая точка функции (то есть функция в этой точке "перегибается").
На промежутке от -бесконечности до -1 (это значения х) производная больше нуля (y'(-2) = 3 * 4 - 3 = 9), то есть изначальная функция возрастает.
На промежутке от -1 до 1 y' < 0 (y'(0) = -3) => y убывает.
Ну и от 1 до +бесконечности y' > 0  (y'(2) = 9)  => y возрастает.
Чтобы начертить график этой функции надо еще знать координаты точек перегиба:
y(-1) = -1+3-5 = -3
y(1) = 1 - 3 - 5 = -7
На счет исследовать - промежутки возрастания, убывания известны, кажется еще промежутки знакопостоянства нужны. 
Решим ур-е:
x^3 - 3x - 5 = 0;
По формуле Кардано:
Q = (-3/3)^3 + (-5/2)^2 = -1 + 25/4 = 21/4 = 5 1/4
α = (5/2 + sqrt(21/4))^1/3;
β = (5/2 - sqrt(21/4))^1/3;
x = α + β = (5/2 + sqrt(21/4))^1/3 + (5/2 - sqrt(21/4))^1/3 = (2.5 + 2.29)^1/3 + 
+ (2.5 - 2.29)^1/3 = 1.686 + 0.6 = 2.286;
Это точка пересечения с ОХ, до нее функция возрастает, значит от -бесконечности до 2.286 y<0, от 2.286 до +бесконечности y>0
4,6(85 оценок)
Ответ:
nik19991
nik19991
14.05.2020

Приведем примерный алгоритм получения необходимых данных.

1.Нахождение области определения функции

Определение интервалов, на которых функция существует.

!!! Очень подробно об области определения функций и примеры нахождения области определения тут.

2.Нули функции

Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.

3.Четность, нечетность функции

Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.  

4.Промежутки знакопостоянства

Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.  

5. Промежутки возрастания и убывания функции.

Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.

6. Выпуклость, вогнутость.

Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.  

7. Наклонные асимптоты.

 

Пример исследования функции и построения графика №1

Исследовать функцию средствами дифференциального исчисления и построить ее график.

4,4(67 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ