Если исходить из классического определения луча, как геометрического множества точек прямой, лежащих по одну сторону от данной точки, и рассматривая данную задачу для лучей, лежащих на одной плоскости α, то 1) непересекающиеся лучи (не имеющие общих точек) должны быть параллельны друг другу, могут быть однонаправленными или разнонаправленными, и построить их можно бесконечное (математически) множество - пример на прилагаемом рис обозначен красным цветом; 2) пересекающиеся под прямым углом лучи будут иметь общую точку O, причём угол между ними будет составлять 90° и построить таких лучей также можно беконечное множество - пример на прилагаемом рис обозначен зелёным цветом.
Решение: Обозначим скорость парохода за (х) км/час, а скорость течения реки за (у), тогда согласно условия задачи: -скорость движения парохода по течению реки равна (х+у)=18 -скорость движения парохода против течения реки равна: (х-у)=14 Решим систему уравнений: х+у=18 х-у=14 Из первого уравнения найдём значение (х) из первого уравнения и подставим во второе уравнение: х=18-у (18-у)-у=14 18-у-у=14 18-2у=14 -2у=14-18 -2у=-4 у=-4 : -2 у=2 (км/час) - скорость течения реки Подставим значение у=2 в уравнение х=18-у х=18-2 х=16 (км/час) - скорость парохода в стоячей воде