И так. С начало нужно решить уравнение cosx=1/2. X = Pi/3 + 2Pi*k ; (2Pi)/3 +2Pi*k, Где k целое число. Теперь нам нужно сократить основное выражение. Тангенс мы пока трогать не будем, а вот дробь можно сократить. Так как 1 = cos^2x + sin^2x, то (cos^2x -1) = cos^2x - cos^2x - sin^2x, тут косинус сокращается и остается только -sin^2x. Теперь наша дробь получается вот такой -sin^2x / 3sin^2x, синусы сокращаются о выходит -1/3. Теперь вспоминаем про тангенс, который в начале и просто умножаем Tg^2x на -1/3 И получается -Tg^2x/3. Теперь вместо X подставляем два значения, которые мы нашли в самом начале (Pi/3 и (2Pi)/3) и решаем. Выходит, что -Tg^2(Pi/3)/3 = -1 И -Tg^2((2Pi)/3)/3 = Тоже -1. В итоге ответ -1
1) 1-вариант, если выражение имеет такой вид: (17/8х)=-1-(3/4) (17/8х)=-(1×4+3)/4 (17/8х)=-(7/4) 56х=-68|÷56 х=-(68/56) х=-1(12/56)=-1(3/16)~-1,214286 2-вариант, если выражение имеет такой вид: (17/8)х=-1-(3/4) (17/8)х=-(7/4)|÷(17/8) х=-(7×4×2)/(4×17) х=-(14/17)~-0,82353
значит 7,5+7,5+х+х=24
15+2х=24
2х=24-15
2х=9
х=4,5