Пошаговое объяснение:
Предположим, что все 5 чисел различны, но тогда как минимум 4 из этих сумм различны.
Например, если сложить первое число с 4-мя остальными.
Но мы имеем только 3 суммы.
То есть хотя бы одно число встречается неоднократно.
А значит в указанных суммах должны быть четные суммы ( число складывается с самим собой)
Но среди данных чисел, только число 46 является четным.
А значит среди этих чисел имеется число: 46/2 = 23
Все остальные числа отличные от 23 не могут повторятся.
Если предположить, что 23 повторяется только два раза, то поскольку остальные 3 числа различны, то число 23 дает с этими тремя различными числами еще 3 различные суммы, иначе говоря, должно быть как минимум 4 суммы, то есть мы пришли к противоречию.
Таким образом, число 23 повторяется 3 раза (если бы оно повторялось 4-5 раз, то было бы менее 3-x различных сумм)
Оставшиеся два числа найти легко:
1. 35 - 23 = 12
2. 57 - 23 = 34
Можно заметить, что 12 + 34 = 46, поэтому четвертой лишней суммы не появится.
То есть были написаны числа: 23 23 23 12 34
Ясно, что Кирилл называет число 34.
) 2/3х-1/2х=4/6х-3/6х=1/6х
2) 1/4х+1/3х=3/12х+4/12х=7/12х
3) -7/12у-5/6у=-7/12у-10/12у=-17/12у
4) 8/15у-2/5у=8/15у-6/15у=2/15у
5) 5/9m+2/3m=5/9m+6/9m=11/9m
6) 3/4m-1/6m=9/12m-2/12m=7/12m