М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
marat20172003
marat20172003
04.06.2021 20:11 •  Математика

До обеда! 1)8y-3(2y-3)=7y-2(5y+8) 2)5(2y-9)+6y=4(3y-2)-21 3)5y+7(3-y)=3(5-2y)-6 4)7y-4(3y+5)=2-3(4y-9)

👇
Ответ:
andreywwwoooandrey
andreywwwoooandrey
04.06.2021
1)8у-6у+9=7у-10у-16
2у+9=-3у-16
5у=-25
у=-5
2)10у-45+6у=12у-8-21
16у-45=12у-29
4у=16
у=4
3)5у+21-7у=15-6у-6
21-2у=9-6у
4у=-12
у=-3
4)7у-12у-20=2-12у+27
-5у-20=-12у+29
7у=49
у=7
4,4(65 оценок)
Открыть все ответы
Ответ:
Алина051206
Алина051206
04.06.2021
Для определённости пронумеруем виды трёхслойного куба (далее куб) по порядку по строкам. Так, например, третий – это полностью симметричный.

Далее, для описания манипуляций с видами будем использовать термины:

RT (правый единичный поворот на 90 градусов по часовой стрелке) ,
LT (левый единичный поворот на 90 градусов против часовой стрелки) ,
UT (разворот на 180 градусов)

Наша начальная цель: собрать из пяти видов верхнюю часть куба, т.е. его грани, стоящие над столом. Будем считать, что мы смотрим на стол с кубом сверху. Верхнюю часть куба, состоящую из пяти видов, будем собирать в виде крестовой раскладки.

В центре креста раскладки будет верхняя грань, которая смотрит на нас, когда мы смотрим вниз на стол с кубом. Дальняя от нас (сверху экрана, если смотреть на ноутбук) часть креста раскладки: это задняя сторона куба. Ближняя к нам (снизу экрана, если смотреть на ноутбук) часть креста раскладки: это передняя сторона куба. Левая часть креста раскладки – это левая сторона куба и правая часть раскладки – соответственно правая сторона.

Важно понимать, что на стыках видов (на рёбрах) при составлении раскладки должны совпадать цветные квадратики на краях видов: чёрный к чёрному и белый к белому, поскольку рёбра куба одновременно являются и рёбрами маленьких кубиков, каждый из которых обладает однотонным окрасом со всех сторон.

Перебор возможных вариантов удобно делать на черновике с карандашом и бумагой, либо с ручкой, но тогда нужно зачёркивать неудачные варианты.

Перебор должен быть системным, иначе мы пропустим тот или иной вариант, и можем пропустить и нужный нам вариант. В качестве системы можно предложить, например, такой график просмотра вариантов.

1. Выбираем вид для верхней грани куба, т.е. для центра креста раскладки (сначала первый, потом второй и т.д.)

2. Когда выбран какой-то вид для верхней (центральной) грани, пытаемся подмонтировать в качестве задней грани к нему другие виды. Опять же по порядку видов.

3. Когда выбран какой-то вид для верхней (центральной) и задней граней, пытаемся подмонтировать в качестве правой грани к нему другие виды. Опять же по порядку видов.

4. Когда выбран какой-то вид для верхней (центральной), задней и правой граней, пытаемся подмонтировать в качестве передней грани к нему другие виды. Опять же по порядку видов.

5. Когда выбран какой-то вид для верхней (центральной), задней, правой и передней граней, пытаемся подмонтировать в качестве левой грани к нему оставшийся вид.

При этом нужно следить, чтобы совпадали рёбра не только верхней (центральной) грани с боковыми, но и рёбра между боковыми гранями.

Перед перебором нужно отметить, что грани 3-его и 5-ого видов – несовместимы. Как их не крути, их рёбра никогда не совместятся. Значит, ни один из этих видов не может служить верхней гранью куба, поскольку иначе он бы взаимодействовал по ребру с несовместным видом. Кроме того, эти несовместные виды не могут быть рядом и на соседних боковых гранях. Таким образом, мы понимаем, что при переборе 3-ий и 5-ый виды можно размещать только на противоположных гранях.

Последовательный перебор из, примерно десятка неудачных – приводит к единственному хорошему варианту:

В центре креста раскладки: 2-ой вид.
Слева: 3-ий вид.
Справа: 5ый вид RT.
Сзади: 1-ый вид.
Впереди: 4-ый вид UT.

Эта раскладка показана на первом рисунке. Обратите внимание, что по раскраске совмещены не только рёбра на стыке видов центральных и боковых граней, но и рёбра на стыке соседних боковых граней.

Теперь очень аккуратно в строгом соответствии с буквами-метками (они должны совместиться) переворачиваем раскладку, так чтобы получилась нижняя грань. Это показано на втором рисунке и там уже проявляется по совмещениям на рёбрах вид нижней грани.

Если взглянуть на предлагаемые варианты, то мы можем легко убедиться, что подходит и вариант (А) и вариант (Д) при повороте их на LT.

Выбрать нужный вариант – можно только сосчитав количество белых (их должно быть 12) и чёрных кубиков (их должно быть 15).

Смотрим на первую раскладку. На верхней грани – 3 белых. В среднем видимом слое, в том, что зажат между верхней и нижней гранью (состоящем из 8 кубиков) – 4 белых. В нижней грани (что можно увидеть на второй картинке) – как минимум 3 кубика.

Всего в видимой и известной части кубика мы насчитали 10 белых кубиков. А должно их быть 12. Значит, один белый кубик находится в центре куба (он невидим) и ещё один белый кубик мы можем разместить в положение, отмеченное на втором рисунке знаком вопроса.

А значит, окончательно, нам подходит вариант (Д)

О т в е т :

26. большой куб 3x3x3 сложен из 27 одинаковых маленьких кубиков, 15 из которых закрашены, а 12 -белы
26. большой куб 3x3x3 сложен из 27 одинаковых маленьких кубиков, 15 из которых закрашены, а 12 -белы
4,4(26 оценок)
Ответ:
pazovamilanai
pazovamilanai
04.06.2021

Дан интервал (−14;4).    

а) числовое множество, содержащееся в этом интервале:  

2) [−12;3]

б) числовое множество, не содержащееся в этом интервале:  

3) [4;10]

в) целое число, принадлежащее данному интервалу и отстоящее на одинаковое расстояние от его концов (запиши число): -5

Пошаговое объяснение:

а) -14<-12, а 3<4,  поэтому числовое множество [−12;3] принадлежит интервалу: (−14;4)

б) 10>4, поэтому числовое множество [4;10] не принадлежит интервалу (−14;4)

в) длина интервала (−14;4) равна 14+4, то есть 18.

18:2 = 9

4-9 = -5 (или -14+9 = -5)

Таким образом, целое число, принадлежащее данному интервалу и отстоящее на одинаковое расстояние от его концов равно -5.

4,6(36 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ