1. б) (-3; 8]
2. а)
3. x∈ [-1; 2)
4. x∈ (-3; +∞)
5. x∈ (-1,5; 6]
6. x∈ [1/5; 2]
7. x∈ (-∞; 12]
8. x∈ [-2; 3]
Пошаговое объяснение:
1. Из граничных точек точка -3 отмечена окружностью, поэтому не принадлежит ко множеству, точка 8 отмечен кругом, поэтому принадлежит ко множеству. Если граничное значение не принадлежит ко множеству, то в числовом интервале используется круглая скобка, а если граничное значение принадлежит ко множеству, то в числовом интервале используется квадратная скобка. Поэтому б) (-3; 8]
2. Дано х ≤ -5, что означает все точки множества меньше либо равно -5 (то есть лежат слева от -5) и множество снизу не ограничено. Поэтому ответ а) подходит.
3.
Тогда имеет место двойное неравенство: -1≤ х < 2. ответ: [-1; 2)
4.
Отсюда x>-3 или x∈ (-3; +∞)
5. -6 ≤ 6-2x < 9
-6-6 ≤ -2x < 9-6
-12 ≤ -2x < 3
-12:(-2) ≥ x > 3:(-2)
-1,5 < x ≤ 6 или x∈ (-1,5; 6]
6. При каких значениях переменной имеет смысл выражение
Данное выражение имеет смысл, если подкоренные выражения не отрицательные:
1/5 ≤ x ≤ 2 или x∈ [1/5; 2]
7. Решите совокупность неравенств
Отсюда х ≤ 12 или x∈ (-∞; 12]
8.
Отсюда -2 ≤ х ≤ 3 или x∈ [-2; 3]
du/dx=3x²y³(tg²(x³y³)+1)
d²u/dx²=6xy³(tg²(x³y³)+1)+3x²y³2(tg(x³y³)3x²y³(tg²(x³y³)+1)==6xy³(3x³y³tg(x³y³)+1)(tg²(x³y³)+1)
Аналогично
du/dy=3x3y2(tg²(x³y³)+1)
d²u/dy²=6x³y(tg²(x³y³)+1)+3x³y²2(tg(x³y³)3x³y²(tg²(x³y³)+1)==6x³y²(3x³y³tg(x³y³)+1)(tg²(x³y³)+1)
смешанные
d²u/dxdy=d(3x²y³(tg²(x³y³)+1))/dy=9x²y²(tg²(x³y³)+1)+3x²y³2tg(x³y³)3x³y²(tg²(x³y³)+1)=9x²y²(2x³y³tg(x³y³)+1)(tg²(x³y³)+1)
d²u/dydx=d(3x³y²(tg²(x³y³)+1))/dx=9x²y²(tg²(x³y³)+1)+3x³y²2tg(x³y³)3x²y³(tg²(x³y³)+1)=9x²y²(2x³y³tg(x³y³)+1)(tg²(x³y³)+1),
т.е. смешанные производные равны
18 = 2 * 3 * 3
55 = 5 * 11
39 = 3 * 13
Взаимно простые числа - это числа, у которых нет общих простых множителей, кроме единицы.
Пары взаимно простых чисел: 14 и 55; 14 и 39
18 и 55
55 и 39