Испытание состоит в том, что из 20 вопросов выбирают 8.
n=C⁸₂₀=20!/((20-8)!·8!)=13·14·15·16·17·18·19·20/(2·3·4·5·6·7·8)=13·17·3·19·10=
=
Пусть событие А - " из восьми вопросов знает ответ на 5, не знает на три"
Событию А благоприятствуют исходы:
m=C⁵₁₄·C³₆ - пять вопросов из четырнадцати выученных и три вопроса из шести невыученных
m= (14!/(14-5)!·5!)· (6!/(6-3)!·3!)= ((10·11·12·13·14)/(2·3·4·5)) · (4·5·6/(2·3))=
=11·13·14·4·5
По формуле классической вероятности
p(A)=m/n=(11·13·14·4·5)/(13·17·3·19·10)=(11·14·2)/(17·3·19)=308/969
Сначала найдем точку минимума, для чего вычислим производную:
y’ = (2x3 − 3x2 − 12x + 1)’ = 6x2 − 6x − 12.
Найдем критические точки, решив уравнение y’ = 0. Получим стандартное квадратное уравнение:
y’ = 0 ⇒ 6x2 − 6x − 12 = 0 ⇒ ... ⇒ x1 = −1, x2 = 2.
Отметим эти точки на координатной прямой.
Теперь найдем минимальное значение функции на отрезке [−3; 3]. Оно достигается либо в точке минимума (тогда она становится точкой глобального минимума), либо на конце отрезка. Заметим, что на интервале (2; 3) производная всюду положительна, а значит y(3) > y(2), поэтому правый конец отрезка можно не рассматривать. Остались лишь точки x = −3 (левый конец отрезка) и x = 2 (точка минимума). Имеем:
y(−3) = 2(−3)3 − 3(−3)2 − 12(−3) + 1 = −44;
y(2) = 2*23 − 3*22 − 12*2 + 1 = −19.
Итак, наименьшее значение функции достигается на конце отрезка и равно −44.
ответ: xmin = 2; ymin = −44