10 см² и 5 см²
Пошаговое объяснение:
Рисунок во вложении
Рис . а
Построим прямоугольник NPOF, который проходит через вершины треугольника EDF.Получили три прямоугольных треугольника EPD,DOF и ENF. Чтобы узнать площадь треугольника EDF(S) надо от площади прямоугольника NPOF(S1) отнять площади треугольников EPD(S2),DOF(S3) и ENF(S4) .Формула площади прямоугольника S=a*b, а формула площади прямоугольного треугольника S=(a*b)/2, где а и b - катеты.
S1=4*6=24 см²
S2=(2*4)/2=4 cм²
S3=(2*4)/2=4 cм²
S4=(2*6)/2=6 cм²
S=S1-S2-S3-S4
S=24-4-4-6=10 см²
Рис.б
Построим прямоугольник КLBM, который проходит через вершины треугольника CAB.Получили три прямоугольных треугольника CKA,ALB и BMC. Чтобы узнать площадь треугольника CAB(S) надо от площади прямоугольника KLBM(S1) отнять площади треугольников CKA(S2),ALB(S3) и BMC(S4) .Формула площади прямоугольника S=a*b, а формула площади прямоугольного треугольника S=(a*b)/2, где а и b - катеты.
S1=4*4=16 см²
S2=(2*1)/2=1 cм²
S3=(2*4)/2=4 cм²
S4=(4*3)/2=6 cм²
S=S1-S2-S3-S4
S=16-1-4-6=5 см²
y=x(x-6)=x^2-6x-парабола , пересекает ось х (y=0) при x=0 и 6
0=x(x-6); x1=0; x2=6
вершина параболы x0=-b/(2a)
общий вид параболы y=ax^2+bx+c
в данном примере a=1; b=-6; c=0
x0=-(-6)/2=3
y0=y(3)=3^2-6*3=9-18=-9
(3;-9)-вершина параболы, построю ее
(0;0);(6;0)-нули функции
можно взять еще 2 точки y(-1)=1+6=7; y(7)=49-42=7
(-1;7);(7;7)
график y=0-это ось х
фигура, ограниченная этими кривыми, на рисунке указана штриховкой
Чтобы вычислить площадь ее, надо взять интеграл от разности функций, из верхней вычесть нижнюю
Выше лежит у=0, ниже у=x^2-6x
s=∫(0-(x^2-6x))dx= -∫(x^2-6x)dx= -(x^3/3-6*x^2/2)= -x^3/3+3x^2=
подставлю пределы интегрирования- х меняется от 0 до 6
= -6^3/3+3*6^2-(0+0)= -72+108=36
ответ S=36
15*4+11=71
8*112+3+899
это правильно я прям отвечаю