Числа от 1 до 498 разбиваются на три группы: однозначные, двузначные и трехзначные.
Однозначных чисел 9 (1, 2, ..., 9), двузначных 90 (на первую цифру претендуют числа 1, 2, ..., 9 (всего 9), а на вторую — 0, 1, 2, ..., 9 (всего 10), по правилу умножения всего 9*10=90 вариантов). Трехзначных чисел, не превосходящих 498, в точности 498-99 = 399 (действительно, ряд чисел 100, 101, 102, ..., 498 можно сдвинуть на 99: 1, 2, ..., 498-99, откуда искомых чисел, очевидно, 498-99=399).
Считаем количество цифр: 9*1+90*2+399*3=1386 (однозначные числа дают одну цифру, двузначные — две, трехзначные — три).
ответ: всего 1386 цифр.
Сумма 2018 натуральных чисел равна 2021. Тогда сумму можно представит в следующих видах:
1) В сумме 2017 слагаемые равны 1 и 2018-2017= 1 слагаемое 2021-2017·1 = 4, то есть
1+1+1+...+1+4 = 2021.
Тогда их произведение равно 1·1·1·...·1·4=4.
2) В сумме 2016 слагаемые равны 1 и 2018-2016= 2 слагаемых равные в сумме 2021-2016·1= 5. Число 5 можно разложить на 2 различные натуральные слагаемые 1+4=2+3, первое из которых уже рассмотрено и поэтому
1+1+1+...+1+2+3 = 2021.
Тогда их произведение равно 1·1·1·...·2·3=6.
3) В сумме 2015 слагаемые равны 1 и 2018-2015= 3 слагаемых равные в сумме 2021-2015·1= 6. Число 6 можно разложить на 3 различные натуральные слагаемые 1+1+4=1+2+3=2+2+2, первые 2 из которых уже рассмотрены и поэтому
1+1+1+...+1+2+2+2 = 2021.
Тогда их произведение равно 1·1·1·...·2·2·2=8.
4) В сумме 2014 слагаемые равны 1 и 2018-2014= 4 слагаемых равные в сумме 2021-2014·1= 7. Число 7 можно разложить на 4 различные натуральные слагаемые 1+1+1+4=1+1+2+3=1+2+2+2, все уже рассмотрены.
5) В сумме 2013 слагаемые равны 1 и 2018-2013= 5 слагаемых равные в сумме 2021-2013·1= 8. Число 8 можно разложить на 5 различные натуральные слагаемые 1+1+1+1+4=1+1+1+2+3=1+1+2+2+2, все уже рассмотрены.
Точно также можно установить, что остальные случаи не приводят к новым результатам.
ответ: 4,6,8.