М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LERa007123
LERa007123
10.02.2022 08:13 •  Математика

Из муравейника на поиски «строительного материала» в противоположных направлениях отправились два муравья. скорость одного из них 5 см/сек. через 30 сек расстояние между ними было 270 см. с какой скоростью перелвигаясь второй муравей

👇
Ответ:
finn10
finn10
10.02.2022
(270-5*30)/30=(270-150)/30=120/30=4см/сек
4,6(54 оценок)
Открыть все ответы
Ответ:
Yana12ost
Yana12ost
10.02.2022

1) 3cos2a−4sin2a=3cos2a−4(1−cos2a)=7cos2a−4T.k. −1≤cos a≤1, mo 0≤cos2a≤1 =>−4≤7cos2a−4≤3

-4 - наименьшее значение

3 - наибольшее значение.

\begin{lgathered}2)\ 2sin^2a +3tg\ a*ctg\ a =2sin^2a +3\\ T.k.\ -1 \leq sin\ a \leq 1,\ mo\ 0 \leq sin^2a \leq 1\ => \\ 3 \leq 2sin^2a+3 \leq 5\end{lgathered}2) 2sin2a+3tg a∗ctg a=2sin2a+3T.k. −1≤sin a≤1, mo 0≤sin2a≤1 =>3≤2sin2a+3≤5

3 - наименьшее значение

5 - наибольшее значение.

\begin{lgathered}3)\ 3cos^2a-4sin\ a=3(1-sin^2a)-4sin\ a=-3sin^2a-4sin\ a+3 \\ \Pi ycmb\ sin\ a=t,\ -1 \leq t \leq 1\ =>\\ f(t)=-3t^2-4t+3,\ t \in [-1;1]\\ f'(t)=-6t-4\\ f'(t)=0\ => -6t-4=0\ npu\ t=-\frac{2}{3}\\ f(-\frac{2}{3})=-3(-\frac{2}{3})^2-4(-\frac{2}{3})+3=4\frac{1}{3}\end{lgathered}3) 3cos2a−4sin a=3(1−sin2a)−4sin a=−3sin2a−4sin a+3Πycmb sin a=t, −1≤t≤1 =>f(t)=−3t2−4t+3, t∈[−1;1]f′(t)=−6t−4f′(t)=0 =>−6t−4=0 npu t=−32f(−32)=−3(−32)2−4(−32)+3=431

\begin{lgathered}f(-1)=-3(-1)^2-4(-1)+3=2\\ f(1)=-3*1^2-4*1+3=-4\end{lgathered}f(−1)=−3(−1)2−4(−1)+3=2f(1)=−3∗12−4∗1+3=−4

-4 - наименьшее значение

4\frac{1}{3}431 - наибольшее значение.

4,4(25 оценок)
Ответ:
ArinaBelman18
ArinaBelman18
10.02.2022
Преобразуем x^2 - 6x + y^2 - 6y + 14 = 0.
x^2 - 6x + 9 + y^2 - 6y + 9 = 4
(x-3)^2 + (y-3)^2 = 2^2 - окружность радиуса 2 с центром в (3;3)
Преобразуем x^2 - 2a(x+y) + y^2 + a^2 = 0.
x^2 - 2ax + a^2 + y^2 - 2ay + a^2 = a^2
(x-a)^2 + (y-a)^2 = a^2 - окружность радиуса a с центром в (a;a).
Видим, что центр второй окружности располагается на прямой y=x, там же, где и центр первой окружности. Следовательно, точка касания окружностей будет лежать именно на прямой y=x.
Найдем эти точки касания:
x=y,
(x-3)^2 + (y-3)^2 = 2^2
Отсюда
2*(x-3)^2 = 2^2
(x-3)^2=2
x=y=3+-√2.
Тогда для второй окружности должно выполняться условие:
Расстояние от центра второй окружности (a;a) до точки касания равно радиусу второй окружности.
1) Точка касания (3-√2;3-√2)
Длина вектора (a - (3-√2); a - (3-√2)) равна a. Это значит, что (a - (3-√2))^2+(a - (3-√2))^2=a^2,
2(a-(3-√2))^2=a^2,
(a√2-(3√2-2))^2-a^2=0,
(a(√2-1)-(3√2-2))(a(√2+1)-(3√2-2))=0
Отсюда
а) a(√2-1)-(3√2-2)=0
a=(3√2-2)/(√2-1)=((3√2-2)(√2+1))/((√2-1)*(√2+1))=4+√2
б) a(√2+1)-(3√2-2)=0
a=(3√2-2)/(√2+1)=((3√2-2)(√2-1))/((√2+1)(√2-1))=8-5√2
2) Точка касания (3+√2;3+√2)
Длина вектора (a - (3+√2); a - (3+√2)) равна a. Это значит, что (a - (3+√2))^2+(a - (3+√2))^2=a^2,
2((a - (3+√2))^2)-a^2=0,
(a√2-(3√2+2))^2-a^2=0,
(a(√2-1)-(3√2+2))(a(√2+1)-(3√2+2))=0.
Отсюда
а) a(√2-1)-(3√2+2)=0
a=(3√2+2)/(√2-1)=((3√2+2)(√2+1))/((√2-1)(√2+1))=8+5√2
б) a(√2+1)-(3√2+2)=0
a=(3√2+2)/(√2+1)=((3√2+2)(√2-1))/((√2-1)(√2+1))=4-√2
ответ: 4-√2, 4+√2, 8-5√2, 8+5√2.
4,4(22 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ