М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ніка65
ніка65
29.07.2020 14:28 •  Математика

1.найдите число, ноль целых семь девятых которого равны двум целым восьми десятым. 2. найдите число, если сто целых семь десятых процента его равны четырём целым двадцати восьми тысячным. 3. найдите число, одна восьмая которого равна трём.

👇
Ответ:
1. 7/9 = 2,8
2,8 : 7 * 9 = 3,6 - искомое число (9/9 = 1 - целое);

2. 100,7% = 4,028
4,028 : 100,7 * 100 = 4 - искомое число (100% - целое);

3. 1/8 = 3
3 * 8 = 24 - искомое число (8/8 = 1 - целое).
4,5(44 оценок)
Открыть все ответы
Ответ:
nastyayakushka2
nastyayakushka2
29.07.2020

Имеем многочлен P_{n}(x) = 12x^{5} - 23x^{4} - 27x^{3} - 36x^{2} - x + 3

Корнями многочлена P_{n}(x) называют корни уравнения

12x^{5} - 23x^{4} - 27x^{3} - 36x^{2} - x + 3 = 0

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.

Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.

Выпишем все делители свободного члена: \pm 1; \ \pm 3

Подставим x = 1 в корень уравнения и получим:

12 \cdot 1^{5} - 23 \cdot 1^{4} - 27 \cdot 1^{3} - 36 \cdot 1^{2} - 1 + 3 = 0

-72 = 0 — неправда

Подставим x = -1 в корень уравнения и получим:

12 \cdot (-1)^{5} - 23 \cdot (-1)^{4} - 27 \cdot (-1)^{3} - 36 \cdot (-1)^{2} - (-1) + 3 = 0

-40 = 0 — неправда

Подставим x = 3 в корень уравнения и получим:

12 \cdot 3^{5} - 23 \cdot 3^{4} - 27 \cdot 3^{3} - 36 \cdot 3^{2} - 3 + 3 = 0

0 = 0 — правда

Следовательно, x_{1} = 3 — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на (x - 3) (см. вложение).

После этого исходное уравнение можно записать разложив на множители:

(x - 3)(12x^{4} + 13x^{3} + 12x^{2} - 1) = 0

Решаем второе уравнение:

12x^{4} + 13x^{3} + 12x^{2} - 1 = 0

12x^{4} + 4x^{3} + 9x^{3} + 3x^{2} + 9x^{2} + 3x - 3x - 1 = 0

4x^{3}(3x + 1) + 3x^{2} (3x + 1) + 3x (3x + 1) - (3x + 1) = 0

(3x + 1)(4x^{3} + 3x^{2} + 3x - 1) = 0

(3x + 1)(4x^{3} - x^{2} + 4x^{2} - x + 4x - 1) = 0

(3x + 1)(x^{2}(4x - 1) + x(4x - 1) + (4x - 1)) = 0

(3x + 1)(4x - 1)(x^{2} + x + 1) = 0

\left[\begin{array}{ccc}3x + 1 = 0 \ \ \ \ \ \\4x - 1 = 0 \ \ \ \ \ \\x^{2} + x + 1 = 0\end{array}\right

\left[\begin{array}{ccc}x = -\dfrac{1}{3} \\x = \dfrac{1}{4} \ \ \\ x \notin \mathbb{R} \ \ \end{array}\right

Рациональные корни: -\dfrac{1}{3} ; \ \dfrac{1}{4}


надо. Найти рациональные корни многочлена f = 12x^5 - 23x^4 - 27x^3 - 36x^2 - x + 3
4,6(2 оценок)
Ответ:
Maci189
Maci189
29.07.2020

Имеем многочлен P_{n}(x) = 12x^{5} - 23x^{4} - 27x^{3} - 36x^{2} - x + 3

Корнями многочлена P_{n}(x) называют корни уравнения

12x^{5} - 23x^{4} - 27x^{3} - 36x^{2} - x + 3 = 0

Имеем уравнение пятого порядка. Попробуем его решить с теоремы Безу.

Суть этой теоремы в том, что если уравнение вида с ненулевым свободным членом имеет некий корень , принадлежащий к множеству целых чисел, то этот корень будет делителем свободного члена.

Выпишем все делители свободного члена: \pm 1; \ \pm 3

Подставим x = 1 в корень уравнения и получим:

12 \cdot 1^{5} - 23 \cdot 1^{4} - 27 \cdot 1^{3} - 36 \cdot 1^{2} - 1 + 3 = 0

-72 = 0 — неправда

Подставим x = -1 в корень уравнения и получим:

12 \cdot (-1)^{5} - 23 \cdot (-1)^{4} - 27 \cdot (-1)^{3} - 36 \cdot (-1)^{2} - (-1) + 3 = 0

-40 = 0 — неправда

Подставим x = 3 в корень уравнения и получим:

12 \cdot 3^{5} - 23 \cdot 3^{4} - 27 \cdot 3^{3} - 36 \cdot 3^{2} - 3 + 3 = 0

0 = 0 — правда

Следовательно, x_{1} = 3 — один из корней уравнения. Теперь необходимо выполнить деление многочлена столбиком на (x - 3) (см. вложение).

После этого исходное уравнение можно записать разложив на множители:

(x - 3)(12x^{4} + 13x^{3} + 12x^{2} - 1) = 0

Решаем второе уравнение:

12x^{4} + 13x^{3} + 12x^{2} - 1 = 0

12x^{4} + 4x^{3} + 9x^{3} + 3x^{2} + 9x^{2} + 3x - 3x - 1 = 0

4x^{3}(3x + 1) + 3x^{2} (3x + 1) + 3x (3x + 1) - (3x + 1) = 0

(3x + 1)(4x^{3} + 3x^{2} + 3x - 1) = 0

(3x + 1)(4x^{3} - x^{2} + 4x^{2} - x + 4x - 1) = 0

(3x + 1)(x^{2}(4x - 1) + x(4x - 1) + (4x - 1)) = 0

(3x + 1)(4x - 1)(x^{2} + x + 1) = 0

\left[\begin{array}{ccc}3x + 1 = 0 \ \ \ \ \ \\4x - 1 = 0 \ \ \ \ \ \\x^{2} + x + 1 = 0\end{array}\right

\left[\begin{array}{ccc}x = -\dfrac{1}{3} \\x = \dfrac{1}{4} \ \ \\ x \notin \mathbb{R} \ \ \end{array}\right

Рациональные корни: -\dfrac{1}{3} ; \ \dfrac{1}{4}


надо. Найти рациональные корни многочлена f = 12x^5 - 23x^4 - 27x^3 - 36x^2 - x + 3
4,5(93 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ