Определяем координаты точек на параболе у = х²: К(7; 49), L(2; 4), M(10, 100). Уравнение прямой KL: Сократим знаменатели на -5 и приведём к общему знаменателю: 9х-63 = у-49, 9х-у-14 = 0 или у = 9х-14. Эта прямая пересекает ось ординат в точке -14. Коэффициент наклона прямой MN равен (100+14)/10 = 114/10 = 11,4. Получаем уравнение прямой MN: y = 11,4x-14. Теперь находим точку N на параболе как точку пересечения параболы у=х² и прямой у=11,4х-14. х² = 11,4х-14. Получаем квадратное уравнение х²-11,4х+14 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=(-11.4)^2-4*1*14=129.96-4*14=129.96-56=73.96;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√73.96-(-11.4))/(2*1)=(8.6-(-11.4))/2=(8.6+11.4)/2=20/2=10 (это точка М)(;x₂=(-√73.96-(-11.4))/(2*1)=(-8.6-(-11.4))/2=(-8.6+11.4)/2=2.8/2=1,4.
2)*-любое от 0 до 9
3)*=0;1;2
4)*-любое от 0 до 9