Дано: Решение:
KMNP-параллелограмм т.к. KMNP-параллелограмм,то его
KE-биссектриса противолежащие стороны равны,то есть
ME=10 см KM=NP,а MN=KP.∠K=∠N,и ∠M=∠P. т.к. ME
P KMNP=52 см биссектриса,то ∠K делится на 2 равных
Найти: угла ∠1=∠2,∠3(∠E) равен ∠1 как KP-? накрест лежащие (при секущей ME).
Доказать: ME=KM=10 см,NP=KM=10 см.
ΔKME-равнобедренный Пусть EN=x см,тогда MN=10 см+ x см
Составим уравнение:
10+10+10+x+10+x=52
40+2x=52
2x=52-40
2x=12
x=12:2 NE=6 см,значит MN=6 см+10 см=16 см,KP=MN=16 см
ответ:KP=16 см
Надеюсь ответ был полезным
Пошаговое объяснение:
Уравнение прямой на координатной плоскости имеет вид:
y = kx + b
где k – это и есть угловой коэффициент прямой.
Угловой коэффициент прямой равен тангенсу угла наклона прямой. Это угол между данной прямой и осью ох.
k = tgα
где α - это угол между прямой и осью Ох
Он лежит в пределах от 0 до 180 градусов.
То есть, если мы приведём уравнение прямой к виду y = kx + b, то далее всегда сможем определить коэффициент k (угловой коэффициент).
Так же, если мы исходя из условия сможем определить тангенс угла наклона прямой, то тем самым найдём её угловой коэффициент.
Найти угловой коэффициент можно разными
Вариант 1
Уравнение прямой проходящей через две данные точки имеет вид:
где (х₁,у₁) и (х₂,у₂) - координаты точек прямой
В нашем случае (2,4) и (0,0)
Запишем уравнение прямой
y = 2x
Вариант 2
Поскольку прямая проходит через начало координат(0,0) то b = 0
Следовательно уравнение прямой имеет вид
у = kx
и подставив в уравнение координаты точки прямой (2,4)
мы найдем угловой коэффициент
4 = 2k
k = 2
Вариант 3
Так как угловой коэффициент численно равен tgα где α угол наклона прямой, то найдем tgα из прямоугольного треугольника с координатами (0,0), (2,4) и (2,0).
У данного прямоугольного треугольника противолежащий к углу катет равен 4(y=4), а прилежащий к углу катет равен 2(x=2)
Следовательно k=2
Пошаговое объяснение:
Делящиеся на 23, это 23, 46, 69, 92.
Заметим, что все эти числа заканчиваются на разные цифры.
Т.к. последняя цифра 7, то перед ней может быть только 1, перед 1 может быть только 5, перед 5 - 8, перед 8 - 6
Перед 6, будет 4,
перед 4, будет 3,
перед 3, будет 2,
перед 2, будет 9,
и опять будет 6. После этого опять процесс повторится.
В результате, конец последовательности выглядит так:
...(92346) (92346) (92346) 8517.
Таким образом, в последовательности идут группы по пять цифр (92346), и в конце идут цифры 8517. Т.к. всего 2004=5*400+4 цифры, то в последовательности укладывается ровно 400 групп по 5 цифр (92346) и плюс в конце группа 8517. Т.е. первая цифра в последовательности 9.