Дано:
L=8 см
∠β = 30°
Найти:
V=?
S=?
Обычно, в треугольной пирамиде проекция бокового ребра на основание равна две третьих высоты. (2/3)*h (это высота основания пирамиды).
1) (2/3)*h=8*cos 30°=8√3/2=4√3 см
2) Высота основания h=(3/2)*4√3=6√3 см
3) а=h/cos 30°=6√3/(√3/2)=12 см (Сторона основания)
4) Н= L*sin 30°=8*(1/2)=4 см (Высота пирамиды)
5) А=√(Н² + (h/3)²)=√(16 + (6√3/3)²)=√(16 + 12)=√28=2√7≈5,292 см (Апофема "А" боковой грани)
6) S1=a²√3/4=12²√3/4=36√3≈62,3538 см² (Площадь основания)
7) S2=(1/2)РА=(1/2)*(3*12)*(2√7)=36√7 ≈ 95,25 см². (Площадь боковой поверхности)
8) S=S1+S2=62,3538+95,247=157,6008 см² (Вся поверхность)
9) V=(1/3)SoH=(1/3)*62,3538*4=83,1384 см³
ответ: S=157,6008 см², V=83,1384 см³.
Если несколько точек лежат на одной прямой, то говорят, что они коллинеарны.
Формула коллинеарности точек как площади треугольника:
S= 1/2{ (x1 y2 + x2 y3 + x3 y1) — ( x2 y1 + x3 y2 + x1 y3) }.
Если полученный результат равен 0 — точки коллинеарны (лежат на одной прямой;
Если полученный результат не равен 0 — точки неколлинеарны.
A(12;2), B(-8;-2), C(2;0) .
S = 1/2{ (x1 y2 + x2 y3 + x3 y1) - ( x2 y1 + x3 y2 + x1 y3) }
= 1/2{(-24+0+4) - (-16+-4+0 )}
= 1/2(-20 - -20)
= 1/2(0)
= 0
Площадь = 0; Точки коллинеарны.
Можно применить более простой равенство тангенсов угла наклона отрезков АВ и ВС.
tgАВ = (-2-2)/(-8-12) = -4/-20 = 1/5.
tgBC = (0+2)/(2+8) = 2/10 = 1/5.
Это говорит о том, что из точки В отрезок идёт в том же направлении, что и АВ - то есть по одной прямой.
1 т. - 1000 кг
Значит, из 100 кг - молока - 9 кг сыра.
1000 : 100 = 10 - разница
9*10 = 90 кг сыра
Удачи