Сначала выполним чертёж. Это позволит найти точки пересечения графиков. Точки пересечения линий согласно чертежа (см. вложение) х₁=-1 х₂=2. Можно найти точки пересечения и аналитически, решив уравнение: х²=х+2 х²-х-2=0 D=(-1)²-4*(-2)=9=3² x₁=(1-3)/2=-1 x₂=(1+3)/2=2 Значит нижний предел интегрирования a=-1, верхний предел интегрирования b=2. Площадь фигуры, ограниченная графиками функций, находится по формуле S=∫(f(x)-g(x))dx В нашем примере на отрезке [-1;2] прямая расположена выше параболы, поэтому из х+2 необходимо вычесть х²
Сначала выполним чертёж. Это позволит найти точки пересечения графиков. Точки пересечения линий согласно чертежа (см. вложение) х₁=-1 х₂=2. Можно найти точки пересечения и аналитически, решив уравнение: х²=х+2 х²-х-2=0 D=(-1)²-4*(-2)=9=3² x₁=(1-3)/2=-1 x₂=(1+3)/2=2 Значит нижний предел интегрирования a=-1, верхний предел интегрирования b=2. Площадь фигуры, ограниченная графиками функций, находится по формуле S=∫(f(x)-g(x))dx В нашем примере на отрезке [-1;2] прямая расположена выше параболы, поэтому из х+2 необходимо вычесть х²
х=19/19-8/19
х=11/19
2)х= 1 3/19-14/19
х= 22/19-14/19
х=8/19 - данное уравнение