ответ:
функция y=cosx является чётной. поэтому её график симметричен относительно оси oy .
для построения графика на отрезке −π≤x≤π достаточно построить его для 0≤x≤π , а затем симметрично отразить его относительно оси oy .
найдём несколько точек, принадлежащих графику на этом отрезке 0≤x≤π : cos0=1; cosπ6=3√2; cosπ4=2√2; cosπ3=12; cosπ2=0; cosπ=−1 .
итак, график функции y=cosx построен на всей числовой прямой.
пошаговое объяснение:
1. область определения — множество r всех действительных чисел.
2. множество значений — отрезок [−1; 1] .
3. функция y=cosx периодическая с периодом 2π .
4. функция y=cosx — чётная.
5. функция y=cosx принимает:
- значение, равное 0 , при x=π2+πn,n∈z;
- наибольшее значение, равное 1 , при x=2πn,n∈z ;
- наименьшее значение, равное −1 , при x=π+2πn,n∈z ;
- положительные значения на интервале (−π2; π2) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈z ;
- отрицательные значения на интервале (π2; 3π2) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈z .
6. функция y=cosx :
- возрастает на отрезке [π; 2π] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈z ;
- убывает на отрезке [0; π] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈z .
ответ: 200/3 см²
Пошаговое объяснение:
Пусть дан треугольник МNK, где угол N - прямой. NH - высота проведённая к гипотенузе и равная 8 см. MH - будет являться проекцией катета MN на гипотенузу и равняться 6 см. Соответственно HK будет проекцией NK, найдём его.
По определению высоты в прямоугольном треугольнике она является средним пропорциональным для проекций двух катетов на гипотенузу треугольника, следовательно, NH²=MH*HK
64=6*HK => HK= 32/3, тогда гипотенуза равна 6+32/3=50/3 (MH+HK)
Площадь прямоугольного треугольника равна 1/2 * высоту * гипотенузу
S=1/2 * 50/3 * 8 = 200/3 см²
б) (-90,1-0,01)+90,1=-90,1+90,1-0,01=-0,01
в) -(0,154-0,3)-0,3=-0,154+0,3-0,3=-0,154