НОД (216 ; 336) = 2 ∙ 2 ∙ 2 ∙ 3 = 24
Пошаговое объяснение:
Разложим число 216 на простые множители. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
216 : 2 = 108 - делится на простое число 2
108 : 2 = 54 - делится на простое число 2
54 : 2 = 27 - делится на простое число 2
27 : 3 = 9 - делится на простое число 3
9 : 3 = 3 - делится на простое число 3.
Разложим число 336 на простые множители. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
336 : 2 = 168 - делится на простое число 2
168 : 2 = 84 - делится на простое число 2
84 : 2 = 42 - делится на простое число 2
42 : 2 = 21 - делится на простое число 2
21 : 3 = 7 - делится на простое число 3.
Выделим выпишем общие множители
216 = 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 ⋅ 3
336 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 7
Общие множители (216 ; 336) : 2, 2, 2, 3
Теперь, чтобы найти НОД нужно перемножить общие множители
ответ: НОД (216 ; 336) = 2 ∙ 2 ∙ 2 ∙ 3 = 24
а) х = 14
б) а = 2
в) n = 1
Пошаговое объяснение:
а) б) -19а + 16 = -10а - 2 в) -12(n - 3) = -11n + 35
7х - 14 = 6х -19а + 10а = -16 - 2 -12n + 36 = -11n + 35
7х - 6х = 14 -9а = -18 -12 n + 11n = 35 - 36
х = 14 а = -18 : (-9) -n = -1
а = 2 n = -1 : (-1)
n = 1