Информационные связи. все живые существа способны обмениваться информацией с себе подобными для согласования своих действий и ответных реакций на проявление факторов среды. при этом, во-пер- вых, используемые ими сигналы, как правило, просты и конкретны: об опасности, сообщение о пище, обращение к половому партнеру или потомству и т. п. (рис. 88, 89). во-вторых, дистанция их действия ограничена: от непосредственного контакта до сотен метров или нескольких километров. в-третьих, информативные сигналы фиксируются крайне редко и в простейшей форме («здесь был я» — че'рез пахучие метки). например, медведь наносит свою метку как можно выше, чтобы информировать других медведей о своем росте и, следовательно, силе. накопление такой информации, ее прямая передача и непосредственное использование вторыми и последующими поколениями («внуками» и далее) невозможны.информационные связи в природных популяциях обеспечивают передачу конкретных сигналов на ограниченную дистанцию в течение ограниченного времени. у подавляющего большинства видов информационные связи обеспечивают согласованные действия только относительно небольшого числа особей — единиц, десятков, редко сотен. это половые партнеры, семьи, соседи, члены стаи. исключения составляют общественные насекомые: осы, пчелы, шмели, муравьи. показательно, что именно эти виды демонстрируют впечатляющие успехи, например в сборе и заготовке пищи. а колонны бродячих муравьев, повергающие в панику всех обитателей тропических джунглей, — убедительная иллюстрация мощи согласованных действий миллионов особей, их непреодолимого давления на окружающую среду.
Решим задачу в общем случае. Обозначим число сторон в основании призмы за n. Тогда призма имеет n граней и 2n вершин. Вероятность рассчитывается как отношение числа благоприятных исходов к общему числу исходов. Найдем общее число исходов: выбрать 3 вершины из 2n имеющихся можно Найдем число благоприятных исходов как разность общего числа исходов и числа неблагоприятных исходов. Общее число исходов известно, теперь находим число неблагоприятных исходов. Если все выбранные вершины лежат на боковой грани или на основании, то образовавшееся сечение не будет содержать точек строго внутри призмы. Число выбрать три вершины боковой грани равно , так как призма имеет n боковых граней, и в каждой грани расположено 4 вершины. Число выбрать три вершины основания равно , так как призма имеет всего два основания и в каждом из этих оснований расположено n вершин. Получаем общее число неблагоприятных исходов: . Тогда число благоприятных исходов равно . Находим искомую вероятность:
Для семиугольной призмы, то есть для n=7, получаем: