2. Рассмотрим треугольник BEF.
По условию это равносторонний треугольник. Значит:
BE = BF = EF;
∠FBE = ∠BEF = ∠EFB = 180° : 3 = 60°.
3. Найдем ∠AFB.
BC || AD, BF - секущая. Значит,
∠AFB = ∠FBE = 60°, как внутренние накрест лежащие.
4. Рассмотрим треугольник ABF.
В нем AF = BF, так как AF является половиной AD, а BF - половина BC, также AD = BC. Следовательно, AF = BF.
Значит, треугольник ABF равнобедренный.
В равнобедренном треугольнике углы при основании равны. То есть
∠BAF = ∠FBA.
Найдем их.
∠BAF + ∠FBA + ∠AFB = 180°;
∠BAF + ∠FBA + 60° = 180°;
∠BAF + ∠FBA = 180° - 60°;
∠BAF + ∠FBA = 120°;
∠BAF = ∠FBA = 120° : 2;
∠BAF = ∠FBA = 60°.
5. Найдем все углы параллелограмма.
У параллелограмма противолежащие углы равны.
∠BAF = ∠BCD = 60°.
∠ABC = ∠ADC = ∠FBA + ∠FBE;
∠ABC = ∠ADC = 60° + 60°;
∠ABC = ∠ADC = 120°.
18 = 2 · 3 · 3
14 = 2 · 7
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (14; 18) = 2 · 3 · 3 · 7 = 126
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (28; 42) = 2 · 3 · 7 · 2 = 84
33 = 3 · 11
21 = 3 · 7
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (21; 33) = 3 · 11 · 7 = 231
30 = 2 · 3 · 5
12 = 2 · 2 · 3
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (12; 30) = 2 · 3 · 5 · 2 = 60
Всё что успел. Бегу сорри..