ломаная состоит из трех звеньев .длина первого звена 9,2 см,что на 3,5 см больше длины второго звена и на 4,9 см меньше длины третьего .найдите длину ломаной вас
Первое звено 9,2 см Второе на 3,5 см меньше чем первое третье на 4,9 см больше чем первое Найти всю длину ломанной 1) 9,2-3,5=5,7 см длина второго звена 2) 9,2+4,9=14,1 см длина третьего звена 3) 9,2+5,7+14,1=29 см ответ: длина ломаной 29 см
На основании определения функции каждому значению аргумента х из области определения R ( все действительные числа ) соответствует единственное значение функции y , равное x 2.
Например, при х = 3 значение функции y = 3 2 = 9 , а при х = –2 значение функции y = (–2) 2 = 4 .
Изобрази график функции y = x 2 . Для этого присвой аргументу х несколько значений, вычисли соответствующие значения функции и внеси их в таблицу.
Если: x = –3 , x = –2 , x = –1 , x = 0 , x = 1 , x = 2 , x = 3 ,
то: y = 9 , y = 4 , y = 1 , y = 0 , y = 1 , y = 4 , y = 9 .
Нанеси точки с вычисленными координатами (x ; y) на плоскость и соедини их плавной непрерывной кривой. Эта кривая, называющаяся параболой, и есть график исследуемой тобой функции.
На графике видно, что ось OY делит параболу на симметричные левую и правую части (ветви параболы), в точке с координатами (0; 0) (вершине параболы) значение функции x 2 — наименьшее. Наибольшего значения функция не имеет. Вершина параболы — это точка пересечения графика с осью симметрии OY .
На участке графика при x ∈ (– ∞; 0 ] функция убывает, а при x ∈ [ 0; + ∞) возрастает.
Функция y = x 2 является частным случаем квадратичной функции.
Рассмотрим ещё несколько её вариантов. Например, y = – x 2 .
Графиком функции y = – x 2 также является парабола, но её ветви направлены вниз.
График функции y = x 2 + 3 — такая же парабола, но её вершина находится в точке с координатами (0; 3) .
Обозначим среднее число, как С (Centre), левое от него L (Left), правое от центра R (Right), вверх от центра U (Up) и вниз от центра D (Down). Оставшиеся по углам числа обозначим, как x, y, z и t.
x U y
L C R
z D t
Сумма в верхнем левом квадрате 2х2: x + U + L + C ;
Сумма в верхнем правом квадрате 2х2: U + y + C + R ;
Сумма в нижнем левом квадрате 2х2: L + C + z + D ;
Сумма в нижнем правом квадрате 2х2: C + R + D + t ;
Сумма этих четырёх сумм будет:
S = ( x + U + L + C ) + ( U + y + C + R ) + ( L + C + z + D ) + ( C + R + D + t ) =
= x + 2U + 2L + 4C + y + 2R + z + 2D + t =
= x + y + z + t + 2 ( U + L + R + D ) + 4C ;
Нам нужно добиться минимальности S, тогда в натуральные числа нужно брать минимальные натуральные числа, а значит и число 1. Величина числа C влияет на общую сумму сильней всего, поскольку число С берётся 4 раза, с коэффициентом 4, т.е. как 4С, поэтому в первую очередь минимизировать нужно именно число С. Итак, С = 1 , а 4С=4 .
Оставшиеся величины U, L, R и D влияют на общую сумму с удвоенной силой, поскольку величина ( U + L + R + D ) берётся 2 раза, с коэффициентом 2, т.е. как 2( U + L + R + D ), поэтому в эти величины нужно взять 4 минимальные натуральные числа отличные от единицы, т.е. числа 2, 3, 4 и 5, всё равно в каком именно порядке, т.е. просто:
( U + L + R + D ) = ( 2 + 3 + 4 + 5 ) = 14 ;
2 ( U + L + R + D ) = 28 ;
Мы знаем, что полная сумма должна быть равна 50, т.е.:
x + U + y + L + C + R + z + D + t = 50 .
( x + y + z + t ) + ( U + L + R + D ) + C = 50 .
Подставим сюда величины, которым мы уже присвоили определённые значения:
( x + y + z + t ) + 14 + 1 = 50 .
x + y + z + t = 35 .
Мы никак не ограниченны в выборе разных чисел x, y, z и t , так что вполне можем подобрать какие-то натуральные числа, чтобы это выполнялось, например ( x + y + z + t ) = ( 7 + 8 + 9 + 11 ) .
Все условия выполнены, числа взяты минимальные, в сумме квадратика 3х3 они дают 50, теперь посчитаем сумму всех сумм 2х2:
S = x + y + z + t + 2 ( U + L + R + D ) + 4C = 35 + 28 + 4 = 35 + 32 = 67 ;
Второе на 3,5 см меньше чем первое
третье на 4,9 см больше чем первое
Найти всю длину ломанной
1) 9,2-3,5=5,7 см длина второго звена
2) 9,2+4,9=14,1 см длина третьего звена
3) 9,2+5,7+14,1=29 см
ответ: длина ломаной 29 см