ответ:
пошаговое объяснение:
перед нами уравнение параболы. ветки направлены вниз, так как первый коэффициент меньше 0.
строим параболу по стандартному плану:
1)координаты вершины
2)точки пересечения с ох и оу
3)собственно, сам график
координаты вершины:
(аx^2+bx+c - уравнение, у нас а=-2 b=4 c=0)
х=-b/2a=1 (формула)
y=-2*1+4*1=2 (подставили х)
рисуем точку (х,у) на графике
2)точки пересечения с ох:
в них координата у равна 0, тогда решаем уравнение:
0=-2x^2+4x - квадратное уравнение, корни -2 и 2
с оу:
аналогично, х равен 0
y=-2*0+4*0=0
ставите точки в этих координатах и рисуете по ним параболу
ответ:
удастся помешать
пошаговое объяснение:
при выборе произвольного числа n и последующем действии в итоге могут быть получены числа n-1 или n+1, так как они отличаются на 2, а целью собаки является получить число кратное 4, то свинья любое произвольное единичное число может превратить в не кратное 4.
минимальное число чисел которое может задать собака для получения числа кратного 4 является два. это должны быть числа 4*z1 - 1 и 4*z2 + 1 (где z1 и z2 - целые числа). в этом случае как при увеличении, так и при уменьшении на 1, одно из чисел становится кратным 4.
в любой последовательности чисел с четным количеством членов не более половины может быть после действия свиньи кратным 4 (если свинья не поддается), в случае нечетного количества членов, свинья может выбрать действие, которое превращает в не кратные 4 больше половины членов ряда (можно разделить ряд на пары + 1 число и потом произвести над ними одно и то же действие так, что не более одного числа в паре станет кратным 4, а единичное число не будет кратно 4).
в итоге из произвольного ряда чисел (после действия свиньи) кратных 4 может быть получено не более n/2 для рядов с четным количеством членов и не более (n-1)/2 для рядов с нечетным количеством членов
таким образом максимальное количество чисел, кратных 4, которые может получить собака будет равно (2019-1)/2 = 1009