Обозначим числа через х и у.
Согласно условию задачи, сумма этих двух чисел равна 15, следовательно, справедливо следующее соотношение:
х + у = 15.
Также известно, что 40% второго числа равны 60% первого, следовательно, справедливо следующее соотношение:
(60/100) * х = (40/100) * у.
Упрощая второе соотношение, получаем:
х = (100/600) * (40/100) * у;
х = (3/2) * у.
Решаем полученную систему уравнений. Подставляя в первое уравнение значение (3/2) * у из второго уравнения, получаем:
(3/2) * у + у = 15.
Решаем полученное уравнение:
(5/2) * у = 15;
у = 15 / (5/2);
у = 15 * (2/5);
у = 6.
Зная у, находим х:
х = (3/2) * у = (3/2) * 6 = 9.
ответ: числа 9 и 6.
Обозначим числа через х и у.
Согласно условию задачи, сумма этих двух чисел равна 15, следовательно, справедливо следующее соотношение:
х + у = 15.
Также известно, что 40% второго числа равны 60% первого, следовательно, справедливо следующее соотношение:
(60/100) * х = (40/100) * у.
Упрощая второе соотношение, получаем:
х = (100/600) * (40/100) * у;
х = (3/2) * у.
Решаем полученную систему уравнений. Подставляя в первое уравнение значение (3/2) * у из второго уравнения, получаем:
(3/2) * у + у = 15.
Решаем полученное уравнение:
(5/2) * у = 15;
у = 15 / (5/2);
у = 15 * (2/5);
у = 6.
Зная у, находим х:
х = (3/2) * у = (3/2) * 6 = 9.
ответ: числа 9 и 6.
теперь дробные 1/9-1/3 приводим к общему знаменателю 9 первая остаётся 1/9 вторую умножаем на 3 1/3*3=3/9. Смотрим от 1/9 не отнимается 3/9. занимаем у целого числа 1 единицу представляем её в виде 9/9. прибавляем к ней 1/9 получаем 10/9. вот и всё.
3 1/9-3/9 = 2 10/9 - 3/9=2 7/9