А) 2/5 и 5/12 = 8/60 и 25/60Б) 5/12 и 7/8 = 10/24 и 21/24В) 6/17 и 11/34 = 204/578 и 187/578Г) 5/16 и 5/12 = 15/48 и 20/48Д) 7/33 и 3/77 = 48/231 и 9/231Е) 5/22 и 2/55 = 25/110 и 4/110Ж) 4/15 и 3/20 = 16/60 и 9/60З) 5/121 и 8/99 = 40/1089 и 88/1089И) 1/72 и 1/56 = 7/504 и 9/504К) 1/48 и 1/72 = 3/144 и 2/144Л) 2/77и 3/44 = 8/308 и 21/308М) 1/51 и 1/68 = 4/204 и 3/204Н) 5/36 и 7/54 = 15/108 и 14/108О) 9/35 и 11/45 = 81/315 и 77/315П) 4/49 и 5/63 = 36/441 и 35/441Р) 15/98 и 13/72 = 540/3528 и 637/3528 вот чтото типо того)
В начале решения находим точки пересечения линий, они дадут пределы интегрирования. Решим уравнение х² + 1 = х + 3. х² - х -2 = 0, х = 2 или х = -1. Это абсциссы точек пересечения. Считаем координаты точек.(-1;2) и (2;5). Для нахождения площади фигуры,ограниченной линиями находим площадь трапеции, ее основания 2 и 5, а высота 3. S = (2+5)/2*3 =10,5. Найдем площадь фигуры под параболой . Интеграл от -1 до 2 от (х²+1)dx = (1/3х³ + х) подстановка от-1 до 2 = (1/3 *2³ +2) - (1/3 *(-1)³-1) = 6. Теперь от всей трапеции отнимем часть под параболой 10,5 -6 =4,5.