ответ:М (1).
Пошаговое объяснение:
Найдём расстояние между точками А и В на координатной прямой.
Расстояние АО от точки А до нулевой координаты составит 1,5 единицы, расстояние ОВ от нулевой координаты до точки В - 6 единиц.
Длина отрезка АВ = АО + ОВ = 1,5 + 6 = 7,5 единиц.
АМ : МВ = 1 : 2 - то есть, расстояние от точки А до точки М вдвое меньше расстояния от точки М до точки В.
2 * АМ = ВМ, поэтому правомерно равенство АМ + 2 * АМ = АВ.
В численном выражении 3 * АМ = 7,5, тогда АМ = 2,5 единицы.
Определим координату точки М.
Расстояние от начала координат до точки М равно
ОМ = 2,5 - АО = 2,5 - 1,5 = 1.
Пошаговое объяснение:
Функция представляет собой кубический многочлен. Точек разрыва нет, значит функция непрерывна на отрезке
[
0
;
2
]
.
Находим производную:
y
′
=
(
2
x
3
−
3
x
2
−
4
)
′
=
6
x
2
−
6
x
Приравниваем производную к нулю. Решаем уравнение и получаем критические точки:
6
x
2
−
6
x
=
0
6
x
(
x
−
1
)
=
0
x
1
=
0
,
x
2
=
1
Проверяем принадлежность полученных точек отрезку
[
0
;
2
]
:
x
1
∈
[
0
;
2
]
,
x
2
∈
[
0
;
2
]
Так как обе точки принадлежат отрезку, то вычисляем в них значение функции
f
(
x
)
, так же значение этой функции на концах интервала
[
0
;
2
]
:
y
(
x
1
)
=
y
(
a
)
=
f
(
0
)
=
2
⋅
0
3
−
3
⋅
0
2
−
4
=
−
4
y
(
x
2
)
=
y
(
1
)
=
2
⋅
1
3
−
3
⋅
1
2
−
4
=
−
5
y
(
b
)
=
y
(
2
)
=
2
⋅
2
3
−
3
⋅
2
2
−
4
=
0
Среди полученных значений наибольшее
M
=
0
, наименьшее
m
=
−
5
Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это своевременно получить зачёт у преподавателя!
20% - ? км/ч
--------------------------------------------------------------------------------------------------
1) =12,1 (км/ч) - наши 20% скорости.
2) 60,5-12,1=48,4 (км/ч) - скорость второго поезда.
3) 60,5*2=121 (км) - проехал первый поезд.
4) 96,8÷48,4=2 (часа) - время двух поездов в пути.
5) 96,8+121=217,8 (км) - расстояние от А до В.
---------------------------------------------------------------------------------------------------
ответ: расстояние от А до В составляет 217,8 километров.