Гострими кутами називають кути, менші за прямі. Величина гострих кутів лежить у проміжку від 0° до 90°. Тупі кути більші від прямих, але менші від розгорнутих, їхня величина лежить у проміжку від 90° до 180°. В рівносторонньому трикутнику всі сторони мають однакову довжину. Всі кути рівностороннього трикутника також рівні і дорівнюють 60°. Рівносторонній трикутник ще називаютьправильним.В рівнобедреному трикутнику дві сторони мають однакову довжину, третя сторона при цьому називається основою трикутника. Рівнобедрений трикутник також має однакові кути, які знаходяться при його основі.Різносторонній трикутник має сторони різної довжини. Внутрішні кути різностороннього трикутника різні.Прямокутний трикутник має один внутрішній кут рівний 90° (прямий кут). Сторона, протилежна до прямого кута, називається гіпотенуза. Інші дві сторони називаються катетамипрямокутного трикутника.Тупокутний трикутник має один внутрішній кут більший ніж 90°.В гострокутному трикутнику всі кути менші за 90°. Рівносторонній трикутник є гострокутним, але не всі гострокутні трикутники рівносторонні.
Докажем, что при любом натуральном и выражение А(n) = 4n + 15n - 1 кратно 9. Используем стандартную схему доказательства: 1. При n = 1 выражение A(1) = 41 + 15 · 1 - 1 = 18 кратно 9. 2. Предположим, что при n = k выражение А(k) = 4k + 15k - 1 кратно 9, т. е. 4k + 15k - 1 = 9р (где р - натуральное число). 3. При n = k + 1 надо доказать, что выражение А(k +1) = 4k+1 + 15(k + 1) - 1 делится на 9. Для доказательства можно использовать два й Поступим, как и в примере 1, т. е. выделим в выражении А(k + 1) часть А(k), которая делится на 9. Для этого преобразуем выражение А(k + 1) к виду А(k +1) = 4k+1 + 15k + 14 = 4(4k + 15k - 1) – 45k + 18 = 4 А(k) + 9(2 – 5k). Видно, что выражение А(k + 1) является суммой двух слагаемых, каждое из которых делится на 9. Сложность этого состоит в умении в выражении А(k + 1) выделить часть А(k), т. е. догадаться до преобразования 4k+1 + 15k + 14 = 4(4k + 15k - 1) – 45k + 18. Поэтому рассмотрим другой лишенный такого недостатка. 2-й Из выражения 4k + 15k - 1 = 9р (пункт 2) найдем 4k = 9р + 1 – 15k и подставим в выражение А(k +1) = 4k+1 + 15k + 14 = 4(9p + 1 – 15k) + 15k + 14 = 36p + 18 – 45k. Видно, что выражение A(k + 1) состоит из трех слагаемых, каждое из которых делится на. 9. Связь между пунктами 2 и 3 была обеспечена за счет того, что в пункте 2 была найдена величина 4k и подставлена в выражение пункта 3. Заметим, что если на число п накладываются по условию задачи ограничения, то необходимо ввести новое натуральное число т и свести задачу к старой схеме.
2) 17-4=13
3) 68-13=55