Пусть на первом складе было х тонн картофеля, тогда на втором складе было 2,5х тонн картофеля. Когда на первый склад привезли ещё 189 тонн картофеля, то на нем стало (х + 180) тонн. Когда на второй склад привезли 60 тонн картофеля, то на нем стало (2,5х + 60) тонн. По условию задачи известно, что после этого на обоих складах картофеля стало одинаковое количество. Составим уравнение и решим его.
х + 180 = 2,5х + 60;
х - 2,5х = 60 - 180;
-1,5х = -120;
х = -120 : (-1,5);
х = 80 (т) - на 1-м складе;
2,5х = 80 * 2,5 = 200 (т) - на 2-м складе.
ответ. 80 т; 200 т.
Пошаговое объяснение:
Выясним, составляют ли площади квадратов бесконечно убывающую геометрическую прогрессию.
Если сторона наибольшего квадрата равна 56 см, то сторона вписанного в него квадрата равна 282√ см, следующая 28 см, ...
Если сторона квадрата равна a, то его диагональ равна a2√.
Сторона вписанного квадрата равна половине диагонали...
Площадь квадрата равна a2.
Площади квадратов образуют последовательность: 562; (28⋅2√)2; 282;...
или 3136; 1568; 784; ...
Проверим, является ли эта последовательность бесконечно убывающей геометрической прогрессией.
b2b1=15683136=0,5b3b2=7841568=0,50,5<1,q=0,5
Используем формулу суммы бесконечно убывающей геометрической прогрессии: S∞=b11−q=31361−0,5=31360,5=6272 см2
Сумма площадей всех квадратов равна 6272 см2
Пошаговое объяснение:
6 * 6 = 36