Пошаговое объяснение:
1.Четность/нечетность
Функция четна, так как симметричная относительно нуля. Это легко проверить так как f(-x) = f(x).
2. Периодичность
Функция f(x) называется периодической с периодом , если для любого х из области определения f(x) = f(x+Т) = f(x-Т).
Такого на графике не наблюдается, значит функция непериодична.
3. Монотонность(возрастание и убывание)
Функция возрастает на интервалах (-10;-6), (0;6). Функция убывает на интервалах (-6;0),(6;10).
4. Экстремумы
Точка Хmax называется точкой максимума выполнено неравенство f(х) f(Xmax). Аналогично для минимума.
Функция имеет две точки максимума это точки -6 и 6, и одну точку минимума это 0.
5. Нули функции
Нулем функции y = f(x) называется такое значение аргумента х , при котором функция обращается в нуль: f(x) = 0.
Нули функции это точки 3 и -2
ответ: y(x)≈4-3*x+2*x².
Пошаговое объяснение:
Ищем искомое частное решение y(x) в виде ряда: y(x)=a0+a1*x+a2*x²+...+an*x^n+... Коэффициенты an выражаются формулой an=y⁽ⁿ⁾(0)/n!, поэтому окончательно y=∑y⁽ⁿ⁾(0)*xⁿ/n!
1. По условию, y(0)=4 - первый ненулевой член разложения найден.
2. Найдём y'(0): y'(0)=e^0-y(0)=1-4=-3. Поэтому второй ненулевой член решения уравнения имеет вид -3*x¹/1!=-3*x.
3. Найдём y"(0). Для этого продифференцируем уравнение, после чего получим: y"=e^x-y'. Отсюда y"(0)=e^0-y'(0)=1+3=4 и тогда третий ненулевой член решения уравнения имеет вид 4*x²/2!=2*x².
Теперь приближённо находим частное решение: y(x)≈4-3*x+2*x².
901-(16*15)=661
(30*9)-(68+127)=75