28 голов
Пошаговое объяснение:
Обозначим общее количество голов дракона х
Тогда количество голов после удара первого богатыря будет - a,
после второго богатыря - b.
Вот так:
(х : 2) - 2 = а - остаток голов после первого богатыря
(а : 2) - 2 = b - остаток голов после второго богатыря
(b : 2) - 2 = 0 - остаток голов после третьего богатыря, то есть ни одной.
Решение начинать будем с конца.
(b : 2) - 2 = 0
b/2 - 2 = 0
Прибавим 2 к обеим частям уравнения:
b/2 - 2 + 2 = 0 + 2
b/2 = 2
b = 2 • 2
b = 4
Мы нашли количество голов, которые остались у дракона после второго богатыря. И которые рубил третий богатырь.
Теперь подставляем b в наше уравнение:
(а : 2) - 2 = b
a/2 - 2 = 4
a/2 = 4 + 2
a/2 = 6
a = 6 • 2
a = 12
Тут мы нашли количество голов, которые остались у дракона после первого богатыря. И которые рубил второй богатырь
Теперь вычислим сколько голов было с самого начала
(х : 2) - 2 = а
(х : 2) - 2 = 12
х/2 - 2 = 12
х/2 = 12 + 2
х/2 = 14
х = 14 • 2 = 28
Столько голов было у дракона с самого начала.
Пока богатыри его не убили, несчастного.
ответ: 28 голов
А, ну и проверочка, конечно
(28 : 2) + 2 = 16 голов срубил первый богатырь, видимо Илья Муромец
28 - 16 = 12 - столько голов он оставил двум другим богатырям
(12 : 2) + 2 = 8 - столько голов срубил второй богатырь. Скорее всего Добрыня Никитич.
12 - 8 = 4 - осталось после него драконьих голов
(4 : 2) + 2 = 4 - вот 4 последние головы срубил последний богатырь. Алёша Попович скорее всего)
4 - 4 = 0 вот и закончились даконьи головы)
Рассмотрим максимальное число победных игр: 75 : 3 = 25 (игр), но при таком варианте игр вничью быть не может.
Будем уменьшать число победных игр и считать, сколько за это команда получит очков. Предположим, что победных игр 24: 24 · 3 = 72. Таким образом, в данной конфигурации может быть 24 победы, 3 поражения и 3 ничьи.
Предположим, что победных игр 23: 23 · 3 = 69. Получаем, что 6 очков за ничью и 0 очков за поражение.
Предположим, что победных игр 22: 22 · 3 = 66. Получаем, что такой ситуации быть не может, так как максимальное число игр вничью — восемь, следовательно, 8 очков — 66 + 8 = 74, а в условии сказано, что команда набрала 75 очков.
Таким образом, наибольшее число ничейных матчей — 6.
6*55=330км проехал во 2 день
270+330=600км проехал всего
750-600=150 км осталось проехать
150:3=50км/час с такой скоростью он должен ехать, чтобы преодолеть оставшиеся расстояние за 3 часа.
ответ 4)50 км/ч.