
Имеем линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами, общим решением которого является
.
1)
— общее решение соответствующего линейного однородного дифференциального уравнения:

Применим метод Эйлера: сделаем замену
где
— некоторая постоянная. Тогда 
Получили характеристическое уравнение:

Разделим обе части уравнения на
:


Отрицательный дискриминант означает, что корни данного уравнения будут комплексно-сопряженными:

Тогда 
Воспользуемся формулой Эйлера: 
Фундаментальная система решений:
— функции линейно независимые, поскольку 
Общее решение: 
2)
— частное решение линейного неоднородного дифференциального уравнения, которое находится с метода подбора вида частного решения по виду правой части функции
.
Здесь
, причем
, поэтому частное решение имеет вид
, где
— неизвестный коэффициент, который нужно найти.
Тогда
и
подставим в исходное ЛНДР и найдем
:

Разделим обе части уравнения на 


Таким образом, частное решение: 
Тогда общим решением исходного ЛНДР с постоянными коэффициентами:

ответ: 

Имеем линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами, общим решением которого является
.
1)
— общее решение соответствующего линейного однородного дифференциального уравнения:

Применим метод Эйлера: сделаем замену
где
— некоторая постоянная. Тогда 
Получили характеристическое уравнение:

Разделим обе части уравнения на
:


Отрицательный дискриминант означает, что корни данного уравнения будут комплексно-сопряженными:

Тогда 
Воспользуемся формулой Эйлера: 
Фундаментальная система решений:
— функции линейно независимые, поскольку 
Общее решение: 
2)
— частное решение линейного неоднородного дифференциального уравнения, которое находится с метода подбора вида частного решения по виду правой части функции
.
Здесь
, причем
, поэтому частное решение имеет вид
, где
— неизвестный коэффициент, который нужно найти.
Тогда
и
подставим в исходное ЛНДР и найдем
:

Разделим обе части уравнения на 


Таким образом, частное решение: 
Тогда общим решением исходного ЛНДР с постоянными коэффициентами:

ответ: 
-11х=-9,9
х=-9,9:(-11)
х=0,9
2) 0,6у -1,9у-0,5у=0,54
-1,8у=0,54
у=0,54:(-1,8)
у=-0,3
3) 1/8х-2/3х+1/2х=-5/18
(3х-16х+12х) : 24=-5/18
-х/24=-5/18
х=(-5*24): (-18)
х=-20/3= - 6 2/3
4)-9 5/6 b+2 3/4b+ 1 5/12b=1 7/27
-59/6b+11/4b+17/12b=34/27
(-118b+33b+17b) :12=34/27
-68b/12=34/27
b=(34*12)/27*(-68)
b=-6/27