Объем призмы ищется по такой формуле:
V = Sосн * h, где Sосн — площадь основания призмы, h — ее высота.
Так как все ребра призмы равны, то h = 6 см и в ее основании лежит равносторонний треугольник. Площадь равностороннего треугольника можно найти по следующей формуле:
S = a²√3 / 4, где a — сторона треугольника.
Воспользуемся ей и найдем площадь основания призмы, зная, что a = 6 см:
Sосн = 6²√3 / 4 = 9√3 см².
Теперь можно найти объем призмы:
V = 9√3 * 6 = 54√3 ≈ 93,5 см³.
ответ: объем прямой треугольной призмы равен примерно 93,5 см³.
Пошаговое объяснение:
2)Ну пусть у тебя куб ABCDA1B1C1D1 (У меня нижняя грань ABCD)
рассмотрим треугольник D1DB:
пусть а-ребро куба
рассмотрим тр ADB:
AD=AB=a
угол DAB=90гр, так как куб,
следовательно, по теореме пифагора
DB=а* корень из 2
рассмотрим тр D1DB:
угол D1DB=90 гр, так как куб и плоскости граней перпендикулярны
DD1=A
DB=a* корень из 2
D1B=6
По теореме Пифагора
6 в квадрате=а в квадрате * (а *корень из 2)в квадрате
отсуда а=корень из 12
угол между прямо и плоскость это угол между прямой проэкцией это прямой на плоскость.
проэкцией прямой D1B на плоскость ABCD будет DB
значит нам нужен косину угла D1BD
косинус угра = отношению прилежащего катета к гипотенузе
косD1BD=DB/BD1
косD1BD=а*корень из 2 /6=а* корень из(2/12)=а/корень из 6
3)
1) 46.73х + 53.27х = 268.05
100х=268,05
х=268,05/100
х=2,6805
2) 38.72х - 12.832х - 15.888х = 52.3 - 24.028
10х=28,272
х=28,272/10
х=2,8272