Наибольшая диагональ D правильной шестиугольной призмы - это гипотенуза прямоугольного треугольника, где катеты - боковое ребро, равное высоте призмы H, и диагональ d основы (это шестиугольник), равная двум сторонам основы (или двум радиусам описанной окружности). H = D*sin 60° = 12*(√3/2) = 6√3 см. d = D*cos 60° = 12*0,5 = 6 см. Сторона основы призмы равна половине d: a = d/2 = 6/2 = 3 см. Площадь основы (шестиугольника) равна: So = 3√3a²/2 = 3√3*9 /2 = 27√3/2 см². Объём призмы V = So*H = (27√3/2)*6√3 = 243 см³.
Возможно, можно сделать все проще, но моя идея такая: 1) Переливаем из 3-го стакана (Самого большого) в 1-й (3л.) Теперь у нас все так: 1 - 3л., 2 - 0 л., 3 - 17 л. 2) Переливаем из 1-го во второй, получаем: 1 - 0 л., 2 - 3 л., 3 - 17 л. 3) Снова из самого большого (3) льём в самый маленький (1), получаем: 1 - 3л, 2 - 3л, 3 - 14 л. 4) Из 1 льём во второй, получаем: 1 - 1л (Т.к. второй полностью наполнен), 2 - 5 л., 3 - 14л. 5) Выливаем из 2 в 3. Затем льём из 1 во второй, получаем: 1 - 0л, 2-1л, 3- 19 л. 6) Из 3 льём в 1, из 1 во второй. Получаем: 1 - 0л, 2 - 4л, 3 - 16л.