минимум 6 пар.
Пошаговое объяснение:
Назовём каждую батарейку отдельной буквой — А Б В Г Д Е Ж З И К Л М Н. Это позволит нам не перепутать батарейки, когда мы будем менять их местами друг с другом.
Теперь разобьём батарейки на пары и проверим в фонарике каждую из них: (А Б) (В Г) (Д Е) (Ж З) (ИК) (ЛМ) (Н)
Если фонарик заработал на какой-то из них — отлично, мы нашли нужную пару.
Если лампочка так и не загорелась, значит, в каждой паре у нас оказалась одна хорошая батарейка, и одна плохая.
Теперь возьмём любые две пары — например, (А Б) и (В Г) — и поменяем в них первые батарейки местами.
(В Б) и (А Г) — в этот момент мы проверили уже шесть пар.
Получим: Если фонарик не заработал и после этой перестановки, значит, мы поменяли местами одинаковые батарейки: хорошую заменили на хорошую, или плохую — на плохую. Выходит, нужно взять вторую батарейку из первой пары и поменять её с первой батарейкой из второй пары: берём пару (В Б), достаём оттуда вторую батарейку Б и ставим её на первое место в паре (А Г), получаем: (Б Г) — это седьмая пара.
Если фонарик загорелся, значит, второй мы поставили хорошую батарейку. Если фонарик всё ещё не светит, получается, в этой паре у нас две плохих батарейки, а две хороших остались в другой — (В А). Ставим их в фонарик, и готово!
Получается, что нам понадобится проверить минимум 6 пар.
Пусть х км расстояние между пунктами, тогда
х/6 км/ч скорость 1 мотоциклиста, х/4 км/ч скорость 2 мотоциклиста.
х/6 + х/4 = 5х/12 скорость сближения мотоциклистов
х : 5х/12 = 12х/5х = 12/5 ч = 2 2/5 часа = 2 ч 24 минуты.
ответ:мотоциклисты встретятся через 2 часа 24 минуты.