М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Alfa1sames
Alfa1sames
21.02.2021 00:20 •  Математика

Решите как уравнение! после того как из ящика взяли 4 пакета гвоздей по 15 кг, там осталось еще 25 кг. сколько килограммов гвоздей было в ящике?

👇
Ответ:
Katerina3069
Katerina3069
21.02.2021
1)4×15=60кг-гвоздей взяли из ящика
2)25+60=85кг-гвоздей было
4,7(100 оценок)
Открыть все ответы
Ответ:
хюрем3
хюрем3
21.02.2021

1. Пусть f=\sqrt{x}, g=\sqrt{3-x}. Заметим, что f' и g' монотонно убывают, значит, (f+g)'=f'+g' функция монотонная, следовательно, имеет не более одного корня. Из этого следует, что у уравнения f+g=a,\; a\in\mathbb{R} не более двух корней.

2. Заметим, что если x_{0} является решением, то 3-x_{0} тоже. Очевидно, что x=3/2 является осью симметрии (причем единственной) графика f+g. Иначе говоря, пара x_{0},\; 3-x_{0} исчерпывает все решения указанного уравнения, если таковые имеются. Значит, достаточно потребовать, чтобы x_{0}\neq3-x_{0} \Leftrightarrow x_{0}\neq 3/2. Итак, 2a пробегает область значения рассматриваемой функции, кроме того a, которому соответствует x=3/2 (это 2\sqrt{3/2}).

3. Функция непрерывна, поэтому достаточно посмотреть на наименьшее и наибольшее значения. Наименьшее значение достигается в 0 (то есть значение \sqrt{3}, а наибольшее в x=3/2. Получаем ответ:   2a\in [\sqrt{3},\;2\sqrt{3/2})\Leftrightarrow a\in[\sqrt{3}/2,\;\sqrt{3/2})


Найдите все значения параметра а, при каждом из которых уравнение имеет ровно 2 решения​
Найдите все значения параметра а, при каждом из которых уравнение имеет ровно 2 решения​
4,7(71 оценок)
Ответ:
ellia2
ellia2
21.02.2021

6527.

Пошаговое объяснение:

Получились следующие числа : 1029,1092,1209,1290,1902,1920,2019,2091,2109,2190,2901,2910,9012,

9021,9102,9120,9201,9210. Числа расположены в порядке возрастания. Признак делимости натуральных чисел на 11 : число делится на 11 тогда и только тогда, когда разность между суммой цифр, стоящих на нечётных местах и суммой цифр, стоящих на чётных местах, делится на 11. В частности, эта разность может равняться 0, т. е. вышеуказанные суммы равны. Наша задача прибавить к каждому из этих чисел натуральное число, так, чтобы остаток от деления полученного числа на 11 не был равен 1. Будем прибавлять сначала самое маленькое натуральное число 1. 1029 + 1=1030. Остаток от деления на 11 равен 7. Подойдёт. Разность равна 4. До 11 не хватает 7.

1092+1=1093, разность равна 7. До 11 не хватает 4, т.е. остаток 4. Годится. 1209 + 1=1210. Разность равна 0. Число делится на 11. Остаток 0. 0 не равен 1. Подойдёт. 1290 + 1=1291. Разность равна 7. До 11 не хватает 4. Остаток 4. Берём. 1902 + 1= 1903. Разность равна 11. Делится на 11. Подойдёт. Это и будут первые 5 чисел в новом ряду. Сложим их : 1030+ 1093+1210+1291+1903=6527.

4,6(76 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ