Допустим что это возможно и такая точка O существует. Пусть A, B, C, D — вершины квадрата (перечисленные не обязательно в треугольника для треугольника порядке обхода контура), причем OA = 5, OB = 1. Тогда из неравенства треугольника для треугольника OAB получаем, что AB не меньше 6. Т.к. АВ — это либо сторона квадрата, либо диагональ, то мы заключаем отсюда, что длина стороны квадрата не превосходит 6. Один из отрезков BC и BD является стороной квадрата. Пусть это будет отрезок BC. Тогда в треугольнике OBC длина OC равна 8 или 9, OB = 1, BC не превосходит 6. Получили противоречие с неравенством треугольника. Значит, ситуация, описанная в условии невозможна.
Пошаговое объяснение
4м2= 4*100=400дм2.
63 000см2= 63000 / 100 = 630дм2
8м2= 8 * 10000 = 80000см2.
8 100 дм2= 8100 / 100 = 81м2