Площадь квадрата равна квадраты его стороны, пусть сторона квадрата равна a, тогда a^2 = 36 см^2
a = 6 см.
Площадь серого многоугольника состоит из одного квадрата, четырёх прямоугольник и четырёх треугольников.
Площадь квадрата равна 36 см^2
Площадь одного прямоугольника равна 6 * (6/2) = 6 * 3 = 18 см^2. Так как одно сторона совпадает со стороной квадрата, а другая с половиной стороны квадрата. Значит площадь четырёх прямоугольников: 4 * 18 = 72 см^2.
Треугольнике прямоугольные, также они равнобедренные, катеты их равны половине стороны квадрата, то есть 6 : 2 = 3 см. Значит площадь одного треугольника:
(3 * 3) / 2 = 4.5 см^2
Откуда площадь четырёх треугольников:
4.5 * 4 = 18 см^2
Сложим все площади:
36 + 72 + 18 = 126 см^2
ответ: S = 126 см^2
ответ: ряд сходится, при решении задачи использован признак сравнения.
Пошаговое объяснение:
Сравним это ряд с рядом обратных квадратов ∑1/n², который, как известно, сходится. Для этого составим разность 1/n²-(n+1)/(n⁴+1)=(n⁴-n³-n²+1)/[n²*(n⁴+1)]. Так как знаменатель этой дроби положителен при любом n, то её знак будет зависеть от знака числителя n⁴-n³-n²+1. Но n⁴-n³-n²+1=n²*[(n-1/2)²-5/4]+1=n²*(n-1/2)²-5/4*n²+1. Отсюда следует, что числитель обращается в ноль лишь при n=1; если же n>1, то он положителен, а это значит, что при n>1 1/n²>(n+1)/(n⁴+1). Поэтому данный ряд сходится.
В трех вазах 27 цветков. Во второй вазе цветков в 5 раз больше, чем в первой, а в третьей - в 3 раза больше, чем в первой. Сколько цветков в каждом вазе?
Пусть x цветков - в первой вазе, тогда 5x цветков - во второй вазе, 3x цветков - в третьей вазе. Так как в трёх вазах 27 цветков, то составим и решим уравнение:
x + 5x + 3x = 27
9x = 27
x = 27 ÷ 9
x = 3 - цветков в первой вазе
5 · 3 = 15 - цветков во второй вазе
3 · 3 = 9 - цветков в третьей вазе
ОТВЕТ: в первой вазе 3 цветка, во второй 15 цветков, в третьей 9 цветков