М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Чему равны стороны прямоугольника, если его площадь 24 см, а одна сторона короче другой на 2 см

👇
Ответ:
TheSiDo
TheSiDo
30.08.2020
Пусть одна сторона - х см;
Тогда вторая - (х+2).
Площадь прямоугольника равна произведению длины на ширину.
Составим и решим уравнение:
х(х+2) = 24
x^{2} + 2х - 24 = 0
Получили квадратное уравнение, решаем через дискриминант.
D = 4 + 4*24 = 100
х1 = (-2 + 10) / 2 = 4
х2 = (-2-10)/2 = -6.
Длина стороны не может быть отрицательной, поэтому х = 4 - одна сторона, 
2+4 = 6 - вторая сторона.

Ну а если дискриминант не проходили....не знаю даже. Если только чисто логически размышлять - 24 можно представить как 6*4, 8*3, 12*2, 24*1. Так как в условии сказано, что одна сторона короче другой на 2 см, то подходят стороны 6 и 4. Может так)
4,6(19 оценок)
Открыть все ответы
Ответ:
amina090806
amina090806
30.08.2020

Для дифференцирования понадобится несколько формул:

\begin{gathered}\left( f(x) + g(x) \right)' = f'(x) + g'(x)left( n\cdot f(x) \right)' = n\cdot f'(x)left( x^n \right)' = n \cdot x^{x-1}\end{gathered}

(f(x)+g(x))

=f

(x)+g

(x)

(n⋅f(x))

=n⋅f

(x)

(x

n

)

=n⋅x

x−1

Исходное выражение удобно представить в виде:

F(x) = 3 \sqrt[3]{x^2} - x = 3 x^{2/3} - xF(x)=3

3

x

2

−x=3x

2/3

−x

Продифференцировав его, получаем:

\begin{gathered}F'(x) = (3 x^{2/3} - x)' = (3 x^{2/3})' - (x)' = 3 \cdot \dfrac{2}{3} \cdot x^{2/3 - 1} - 1 = 2\cdot x^{-1/3} - 1 = \dfrac{2}{\sqrt[3]{x}} - 1F'(1) = \dfrac{2}{\sqrt[3]{1}} - 1 = 2 - 1 = 1\end{gathered}

F

(x)=(3x

2/3

−x)

=(3x

2/3

)

−(x)

=3⋅

3

2

⋅x

2/3−1

−1=2⋅x

−1/3

−1=

3

x

2

−1

F

(1)=

3

1

2

−1=2−1=1

4,8(80 оценок)
Ответ:
MarinkaJones
MarinkaJones
30.08.2020

Для дифференцирования понадобится несколько формул:

\begin{gathered}\left( f(x) + g(x) \right)' = f'(x) + g'(x)left( n\cdot f(x) \right)' = n\cdot f'(x)left( x^n \right)' = n \cdot x^{x-1}\end{gathered}

(f(x)+g(x))

=f

(x)+g

(x)

(n⋅f(x))

=n⋅f

(x)

(x

n

)

=n⋅x

x−1

Исходное выражение удобно представить в виде:

F(x) = 3 \sqrt[3]{x^2} - x = 3 x^{2/3} - xF(x)=3

3

x

2

−x=3x

2/3

−x

Продифференцировав его, получаем:

\begin{gathered}F'(x) = (3 x^{2/3} - x)' = (3 x^{2/3})' - (x)' = 3 \cdot \dfrac{2}{3} \cdot x^{2/3 - 1} - 1 = 2\cdot x^{-1/3} - 1 = \dfrac{2}{\sqrt[3]{x}} - 1F'(1) = \dfrac{2}{\sqrt[3]{1}} - 1 = 2 - 1 = 1\end{gathered}

F

(x)=(3x

2/3

−x)

=(3x

2/3

)

−(x)

=3⋅

3

2

⋅x

2/3−1

−1=2⋅x

−1/3

−1=

3

x

2

−1

F

(1)=

3

1

2

−1=2−1=1

4,6(95 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ