Каким образом можно представить закон распределения непрерывной случайной величины, т.е. величины, которая может принимать любые значения на некотором промежутке числовой оси, и число ее возможных значений всегда бесконечно?
Для непрерывной случайной величины вероятность того, что она примет какое-то одно определенное значение, всегда равна нулю. Но можно определить вероятность того, что эта величина примет значение из некоторого промежутка.
Для этого можно использовать функцию плотности распределения вероятностиf(x) (ее еще называютплотностью вероятностиилиплотностью распределения).
Вероятность того, что непрерывная случайная величина х примет значение из некоторого промежутка [a;b], определяют по формуле:
Пошаговое объяснение:
х=30% решаем пропорцию
х=105*30:70=45 р-это потраченные 30 %
105+45=150р это 60% изначальных денег, снова составляем пропорцию
150р=60% (150р+х=100% -вся изначальная сумма)
х=40%
х=150*40:60=100 р-это 40 % имевшихся денег
100+150=250 рублей было сначала