Каждое число имеет две характеристики: абсолютное значение числа, и его знак. Например, число +5, или просто 5 имеет знак «+» и абсолютное значение 5. Число -5 имеет знак «-» и абсолютное значение 5. Абсолютные значения чисел 5 и -5 равны 5. Абсолютное значение числа х называется модулем числа и обозначается |x|. Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно. Это же касается любых выражений, которые стоят под знаком модуля. Правило раскрытия модуля выглядит так: |f(x)|= f(x), если f(x) ≥ 0, и |f(x)|= – f(x), если f(x) < 0 Например |x-3|=x-3, если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0. Чтобы решить уравнение, содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля. Тогда наше уравнение или неравенство преобразуется в два различных уравнения, существующих на двух различных числовых промежутках. Одно уравнение существует на числовом промежутке, на котором выражение, стоящее под знаком модуля неотрицательно. А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно. Рассмотрим простой пример. Решим уравнение: |x-3|=-x2+4x-3 1. Раскроем модуль. |x-3|=x-3, если x-3≥0, т. е. если х≥3 |x-3|=-(x-3)=3-x, если x-3<0, т. е. если х<3 2. Мы получили два числовых промежутка: х≥3 и х<3. Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке: А) При х≥3 |x-3|=x-3, и наше уранение имеет вид: x-3=-x2+4x-3 Внимание! Это уравнение существует только на промежутке х≥3! Раскроем скобки, приведем подобные члены: x2 -3х=0 и решим это уравнение. Это уравнение имеет корни: х1=0, х2=3 Внимание! поскольку уравнение x-3=-x2+4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х2=3. Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид: 3-x=-x2+4x-3 Внимание! Это уравнение существует только на промежутке х<3! Раскроем скобки, приведем подобные члены. Получим уравнение: x2-5х+6=0 х1=2, х2=3 Внимание! поскольку уравнение 3-х=-x2+4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х1=2. Итак: из первого промежутка мы берем только корень х=3, из второго – корень х=2. ответ: х=3, х=2
11) n - порядок числа в прогрессии (у нас n = 6) 21 - 3*6 = 21 - 18 = 3 ответ: В 12) геометрическая прогрессия получается при умножении чисел на определенный постоянный аргумент, в данном случае 2 3;6;12;24;48;96. Сложим их получим 189 Ну или по формуле можно, без разницы. ответ: D 14) Просто раскрываем скобки . ответ: E 15)Х-собст. скорость. (Х+2)-скорость по течен. (Х-2)-скор. против теч. 28:(Х+2)-время по течению 25:(Х-2)-время против течения. 54:Х-время движения по озеру. По условию 28:(Х+2)+25:(Х-2)=54:Х 28Х(Х-2)+25Х(Х+2)=54(Хв квадр.-4) Раскрываем скобки,приводим подобные слагаемые, получаем Хв квадр.+6Х-216=0 Находим дискрименант, по формуле корней квадратного уравнения имеем: Х=12,другое значение не удовлетворяет условию задачи, так как оно отрицательное. ответ: D
2) 17/8 * 4/1 = 34/1 = 68/8
3) 10/9: 5/2 = 10/9 * 2/5 = 2/18
4) 68/8 + 2/18 = 612/72 + 8/72 = 620/72 = 8 целых 44/72= 8 целых 11/18