Построй квадрат, периметр которого равен 24 см. Вычисли площадь этого квадрата. Какими могут быть длина и ширина прямоугольника с такой же площадью?
Формула периметра квадрата:
P = 4a , где а - сторона квадрата.
Тогда:
4a = 24
a = 24 : 4
a = 6 (см)
Формула площади квадрата:
S = a²
S = 6² = 36 (см²)
Формула площади прямоугольника:
S = a * b, где а и b не параллельные стороны фигуры.
Найдем все целочисленные значения а и b, при которых площадь будет равна 36 см² методов подбора:
1 см и 36 см
2 см и 18 см
3 см и 12 см
4 см и 9 см
9 см и 4 см
12 см и 3 см
18 см и 2 см
36 см и 1 см
Даны векторы a̅ = (5; 0; −3), b̅ = (6; 4; 11) и с̅ = (1; 2; 3).
1) Скалярное произведение векторов a̅ и b̅ равно:
a̅ и b̅ = 5*6+0*4+(-3)*11 = 30+0-33 = -3.
2) Векторное произведение векторов a̅ и b̅ равно:
i j k| i j
5 0 -3| 5 0
6 4 11| 6 4 = 0i - 18j + 20k -55j +12i - 0k = 12i - 73j + 20k.
Здесь применён метод Саррюса: добавляются 2 первых столбца, умножение по диагонали слева направо вниз и обратно справа налево вниз с минусом.
3) Смешанное произведение (a̅ х b̅ )*с =
12 - 73 + 20
1 2 3
12 -146 + 60 = -74.
Решение во вложении.