ДАНО ИССЛЕДОВАНИЕ Для наглядности вопроса сразу рассмотри график как функции (красная линия), так и её производной (синяя линия). 1. Область определения. Знаменатель не равен 0. 1-х² ≠0 или х ≠ +/- 1 - точки разрыва. Х∈(-∞,-1]∪[-1,+1]∪[+1,+∞) 2. Производная используется для поиска точек экстремума функции. То, что знаменатель равен (1-х)⁴ и функция имеет разрывы при х=+/- 1 нас не очень волнует. Нас интересуют корни числителя - их должно быть четыре. Из множителя = х² получаем два корня х1 = х2 = 0. Из множителя (х² - 3) получаем еще два корня. х3 = - √3, х4 = √3. - точки экстремума 2. Функция возрастает где производная положительная. УБЫВАЕТ Х∈(-∞,-√3]∪[√3,+∞). ВОЗРАСТАЕТ Х∈[-√3,-1]∪[-1,+1]∪[1,√3] Ymin(-√3) ~ -2.598 Ymax(√3) ~ 2.598 3. Точка перегиба - где два других корня Х= 0. В этой точке равна 0 и вторая производная.
80/25=3.2
70/30=2.3
85/35=2,4
193/60=3,2
258/40=6,45
780/300=2.6
1680/300=5.6
5720/900=6,35
18178/79=230,1
35360/35=1010,2857