. Условие, что выражение равно единице, можно записать так:
(100 + n)k(100 - n)l = 100k + l. Так как правая часть четна, то и левая часть должна быть четна, значит, n четно. Аналогично, левая часть делится на 5, значит, n делится на 5. Значит, n делится на 10. Можно перебрать все 9 возможных вариантов: n = 10, 20, ..., 90. Например, если n = 10, то левая часть делится на 11, что невозможно.Можно обойтись без перебора: пусть n не делится на 25. Тогда числа 100 - n и 100 + n тоже не делятся на 25. Значит, пятерка входит в разложение левой части на простые множители ровно k + l раз. Но она входит в разложение правой части 2(k + l ) раз -- противоречие. Итак, n делится на 25. Аналогично доказывается, что n делится на 4. Но тогда n делится на 100, что невозможно, ибо 0 < n < 100.
ответ:Единственный набор цифр, удовлетворяющий условию задачи - 0,1,4,5,8,9.
Нуль из данного набора цифр может занимать, в каждом конкретном числе, 1-5 разряды.
Аналогичная ситуация происходит и в том случае, если нуль занимает разряд десятков: на данный случай так же приходится 120 разных чисел.
Отсюда естественный вывод что на каждый случай расположения нуля приходится 120 разных чисел. Таким образом, количество шестизначных чисел, удовлетворяющих исходному условию задачи равно 120*5=600.
Пошаговое объяснение: