М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lrydg2363
lrydg2363
24.02.2023 01:15 •  Математика

Горизонтали.1.единица измерения длины.2.единица измерения массы.3.неизвестное в уравнении х: 7=6 4.наименьшее число вершин многоугольника. по вертикали.1.сумма длин сторон многоугольника2.наименьшее натуральное число .3.единица измерения длины

👇
Ответ:
pitonpitonov
pitonpitonov
24.02.2023
1. миллиметр, сантиметр, дециметр, метр, километр.
2. грамм, килограмм,центнер, тонна
3. делимое или икс
4. пять

1. периметр
2. один
3.  миллиметр, сантиметр, дециметр, метр, километр.
4,7(23 оценок)
Открыть все ответы
Ответ:
hellohelloschool
hellohelloschool
24.02.2023

Пошаговое объяснение:

а)

1). Какую часть пути теплоход за вторые сутки, если из условия задачи известно, что в первые сутки теплоход всего пути, а во вторые сутки – на 1/15 пути больше, чем в первые?

9/20 + 1/15 = 27/60 + 4/60 = 31/60 (пути).

2). Какую часть всего пути теплоход за эти двое суток?

9/20 + 31/60 = 27/60 + 31/60 = 58/60 = 29/30 (пути).

ответ: 29/30 всего пути теплоход за эти двое суток.

б) Так как между числами 5 и 7 расположено только одно число 6, то чтобы найти четыре дроби, каждая из которых больше 5/9 и меньше 7/9, необходимо заменить эти дроби по основному свойству дробей равными, но с большим знаменателем, например, 27. Тогда 5/9 = 15/27 и 7/9 = 21/27. Получаем: 5/9 < 16/27 < 7/9; 5/9 < 17/27 < 7/9; 5/9 < 18/27 < 7/9; 5/9 < 19/27 < 7/9

4,7(5 оценок)
Ответ:
katyamora
katyamora
24.02.2023
Сре́днее арифмети́ческое (в математике и статистике) множества чисел — число, равное сумме всех чисел множества, делённой на их количество. Является одной из наиболее распространённых мер центральной тенденции. Введение Править

Обозначим множество чисел X = (x1, x2, …, xn), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (
x
¯
{\bar {x}}, произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности чисел обычно используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки xi из этой совокупности μ = E{xi} есть математическое ожидание этой выборки.

На практике разница между μ и
x
¯
{\bar {x}} в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда
x
¯
{\bar {x}} (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же

x
¯
=
1
n

i
=
1
n
x
i
=
1
n
(
x
1
+

+
x
n
)
.
{\bar {x}}={\frac {1}{n}}\sum _{{i=1}}^{n}x_{i}={\frac {1}{n}}(x_{1}+\cdots +x_{n}).
Если X — случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины (например, среднее арифметическое взвешенное, среднее геометрическое взвешенное, среднее гармоническое взвешенное).

Примеры Править
Для получения среднего арифметического трёх чисел необходимо сложить их и разделить на 3:
x
1
+
x
2
+
x
3
3
.
{\frac {x_{1}+x_{2}+x_{3}}{3}}.
Для получения среднего арифметического четырёх чисел необходимо сложить их и разделить на 4:
x
1
+
x
2
+
x
3
+
x
4
4
.
{\frac {x_{1}+x_{2}+x_{3}+x_{4}}{4}}.
Непрерывная случайная величина Править
Если существует интеграл от некоторой функции
f
(
x
)
f(x) одной переменной, то среднее арифметическое этой функции на отрезке
[
a
;
b
]
[a;b] определяется через определённый интеграл:

f
(
x
)
¯
[
a
;
b
]
=
1
b

a

a
b
f
(
x
)
d
x
.
{\displaystyle {\overline {f(x)}}_{[a;b]}={\frac {1}{b-a}}\int _{a}^{b}f(x)dx.}
Здесь подразумевается, что
b
>
a
.
{\displaystyle b>a.}

Предложена (наряду со средним геометрическим и средним гармоническим) ещё пифагорейцами[1].

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

При стремлении количества элементов множества чисел стационарного случайного процесса к бесконечности среднее арифметическое стремится к математическому ожиданию случайной величины. Направления Править
Основная статья: Статистика направлений
При расчёте среднего арифметического значений некоторой переменной, изменяющейся циклически (например, фаза или угол), следует проявлять особую осторожность. Например, среднее чисел 1° и 359° будет равно
1

+
359

2
=
{\frac {1^{\circ }+359^{\circ }}{2}}=180°. Это число неверно по двум причинам.

Во-первых, угловые меры определены только для диапазона от 0° до 360° (или от 0 до 2π при измерении в радианах). Таким образом, ту же пару чисел можно было бы записать как (1° и −1°) или как (1° и 719°). Средние значения каждой из пар будут отличаться:
1

+
(

1

)
2
=
0

{\frac {1^{\circ }+(-1^{\circ })}{2}}=0^{\circ },
1

+
719

2
=
360

{\frac {1^{\circ }+719^{\circ }}{2}}=360^{\circ }.
Во-вторых, в данном случае, значение 0° (эквивалентное 360°) будет геометрически лучшим средним значением, так как числа отклоняются от 0° меньше, чем от какого-либо другого значения (у значения 0° наименьшая дисперсия). Сравните:
число 1° отклоняется от 0° всего на 1°;
число 1° отклоняется от вычисленного среднего, равного 180°, на 179°.
Среднее значение для циклической переменной, рассчитанное .
4,5(20 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ