От двух пристаней навстречу друг другу вышли два катера через 5 часов они встретились с какой скоростью шёл каждый катер если скорость 1 катера на 12 миль/ч больше скорости другого а расстояние между пристанями 440 миль
1) 440/5= 88(миль в час)скорость 2 катера 2)88+12=100(миль в час ) скорость 1 катера ответ :скорость 1 катера 100 миль в час ,а скорость 2катера 88 миль в час
Рассмотрим один из равных треугольников, разделённых высотой. один катет = 12 (это высота) второй катет обозначим 3 Х гипотенузу обозначим 5Х (это сторона большого треугольника) уравнение: 25 Х квадрат = 144 + (3Х) в квадрате - по теореме Пифагора. Решаем: 16 Х квадрат = 144 Х квадрат = 9 Х = 3, отсюда гипотенуза маленького треугольника, она же сторона большого треугольника равна 3 х 5 = 15 катет маленького треугольника, он же 1/2 основания большого треугольника 3 х 3 = 9, а всё основание равно 9 х 2 = 18 Искомая площадь треугольника равна 18 х 12 / 2 = 108
Чтобы решить эту задачу, нам понадобятся знания о свойствах вписанной окружности и формуле площади треугольника.
Согласно свойству вписанной окружности, любая прямая, проведенная из вершины треугольника к точке касания окружности с стороной, делит эту сторону на две части, длины которых являются хордами окружности. В нашем случае, такая прямая будет проходить через точку C и делить сторону AB на две равные части длиной 7.5 см каждая.
Мы можем обозначить длины сторон треугольника как AB = 15 см, AC = 7.5 см и BC = 7.5 см. Теперь мы можем использовать формулу полупериметра треугольника и радиус вписанной окружности, чтобы найти площадь треугольника.
Полупериметр треугольника вычисляется по формуле s = (AB + AC + BC) / 2. В нашем случае s = (15 + 7.5 + 7.5) / 2 = 15 см.
Формула площади треугольника через полупериметр и радиус вписанной окружности имеет вид S = sqrt(s * (s - AB) * (s - AC) * (s - BC)), где sqrt обозначает квадратный корень.
2)88+12=100(миль в час ) скорость 1 катера
ответ :скорость 1 катера 100 миль в час ,а скорость 2катера 88 миль в час