1) у = 3х + 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = 3•(-х) + 1 = -3х + 1.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = 3х + 1 не является ни чётной, ни нечётной. у = 3х + 1 - функция общего вида.
2) у = -2х + 3.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х) + 3 = 2х + 3.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = -2х + 3 не является ни чётной, ни нечётной. у = -2х + 3 - функция общего вида.
3) у = х^2 - 2.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = (-х)^2 - 2 = х^2 - 2 = у(х),
по определению функция является чётной.
4) у = -2х^2 - 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х)^2 - 1 = -2х^2 - 1 = у(х),
по определению функция является чётной.
5) у = 1/х.
D: x ≠ 0,
D = (- ∞; 0)∪(0; +∞ ) - симметрична относительно 0.
у(-х) = 1/(-х) = - 1/х = - у(х),
по определению функция является нечётной.
1) у = 3х + 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = 3•(-х) + 1 = -3х + 1.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = 3х + 1 не является ни чётной, ни нечётной. у = 3х + 1 - функция общего вида.
2) у = -2х + 3.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х) + 3 = 2х + 3.
у (-х) ≠ у(х),
у (-х) ≠ - у(х),
у = -2х + 3 не является ни чётной, ни нечётной. у = -2х + 3 - функция общего вида.
3) у = х^2 - 2.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = (-х)^2 - 2 = х^2 - 2 = у(х),
по определению функция является чётной.
4) у = -2х^2 - 1.
1. D(y) = R - симметрична относительно 0.
2. у (-х) = -2•(-х)^2 - 1 = -2х^2 - 1 = у(х),
по определению функция является чётной.
5) у = 1/х.
D: x ≠ 0,
D = (- ∞; 0)∪(0; +∞ ) - симметрична относительно 0.
у(-х) = 1/(-х) = - 1/х = - у(х),
по определению функция является нечётной.
Чтобы оно делилось на 5 без остатка С должно быть 5 или 0
Чтобы делилось на 6, С должно делится на 2 и на 3
На 2 делится может 0; 5-нет
Значит С=0 ав0
Число трехзначное и больше 400
А мб 5, 6, 7, 8, 9
А+в+0 должно делится на 3
А=(в+0):2
В=8, тогда а=4
ответ: 480
Проверка
480>400
480:6=80
480:5=96
4=(8+0):2