Рассмотрим треугольник с углом в месте пересечения диагоналей 60°. Две стороны от вершины угла 60° равны по (24 : 2) = 12 см (т.к. диагонали прямоугольника в месте пересечения делятся пополам. ⇒ этот Δ равнобедренный ⇒ углы при основании Δ равны Сумма углов Δ-ка = 180°; (180 - 60) : 2 = (по) 60° - остальные углы. Все три угла = по 60°, ⇒ этот Δ не только равнобедренный, но ещё и равносторонний, а в равностороннем Δ все стороны равны. ⇒ ширина (меньшая сторона) прямоугольника = 12 см. ответ: меньшая сторона прямоугольника = 12 см
Составим уравнение х+х-15=349
2х=349+15
2х=364
х=364/2=182, второе число 182-15=167
или одно число х, второе х+15
х+х+15=349
2х=349-15
2х=334
х=334/2=167
второе 167+15=182