1 отправляется в целые числа=7+1=8, а в дробях остается остаток 5\7
ответ:8 5\7
2)9-4=5
1\7-5\14=2\14-5\14=-3\14
5*14\14-3\14=70\14-3\14=67\14
67 разложим на множители=11+4*14\14 и сократим 14 и 14. Осталось 15\14, 15 больше 14, значит делим 14 на 14=1, осталось 1, единица отправляется в целые=5+1=6 и осталось 11\14.
Представим себе несколько точек. Расстояние от первой до второй назовем a₁, расстояние от второй до третьей - a₂ и т.д. Тогда расстояние от первой до третьей равно a₁+a₂; От первой до четвертой равно a₁+a₂+a₃ От первой до 100100 равно a₁+a₂+a₃+...+a₁₀₀₀₉₉; По условию сумма всех этих расстояний равна 2016. То есть: a₁+(a₁+a₂)+(a₁+a₂+a₃)+...+(a₁+a₂+a₃+...+a₁₀₀₀₉₉) = 2016 Раз a₁ присутствует везде, то кол-во a₁ равняется 100099 или 100099a₁ a₂ присутствует во всех скобках, кроме одной, тогда кол-во a₂ равно 100098 или 100098a₂ Перепишем сумму по-другому: 100099a₁+100098a₂+100097a₃+...+a₁₀₀₀₉₉=2016 По условию, сумма расстояний от второй точки до всех остальных равна 1918 То есть a₁+a₂+(a₂+a₃)+(a₂+a₃+a₄)+...+(a₂+a₃+a₄+...+a₁₀₀₀₉₉) = 1918 a₂ появляется 100098 раз. Остальные аналогично. Другими словами a₁+100098a₂+100097a₃+...+a₁₀₀₀₉₉ = 1918 Найдем разность двух сумм: 2016-1918 = 98 И, если внимательно посмотреть, то 2 суммы отличаются лишь тем, что в одной 100099a₁, а в другой лишь одно a₁, или 100099a₁-a₁ = 98 100098a₁ = 98 a1 = 98/100098 = 49/50049 Не знаю насколько верно(
Представим себе несколько точек. Расстояние от первой до второй назовем a₁, расстояние от второй до третьей - a₂ и т.д. Тогда расстояние от первой до третьей равно a₁+a₂; От первой до четвертой равно a₁+a₂+a₃ От первой до 100100 равно a₁+a₂+a₃+...+a₁₀₀₀₉₉; По условию сумма всех этих расстояний равна 2016. То есть: a₁+(a₁+a₂)+(a₁+a₂+a₃)+...+(a₁+a₂+a₃+...+a₁₀₀₀₉₉) = 2016 Раз a₁ присутствует везде, то кол-во a₁ равняется 100099 или 100099a₁ a₂ присутствует во всех скобках, кроме одной, тогда кол-во a₂ равно 100098 или 100098a₂ Перепишем сумму по-другому: 100099a₁+100098a₂+100097a₃+...+a₁₀₀₀₉₉=2016 По условию, сумма расстояний от второй точки до всех остальных равна 1918 То есть a₁+a₂+(a₂+a₃)+(a₂+a₃+a₄)+...+(a₂+a₃+a₄+...+a₁₀₀₀₉₉) = 1918 a₂ появляется 100098 раз. Остальные аналогично. Другими словами a₁+100098a₂+100097a₃+...+a₁₀₀₀₉₉ = 1918 Найдем разность двух сумм: 2016-1918 = 98 И, если внимательно посмотреть, то 2 суммы отличаются лишь тем, что в одной 100099a₁, а в другой лишь одно a₁, или 100099a₁-a₁ = 98 100098a₁ = 98 a1 = 98/100098 = 49/50049 Не знаю насколько верно(
1)
5+2=7
14\14+11\14=24\14
7 24\14 сокращаем=712\7
12 больше 7, значит делим 7 на 7=1, остаток 5.
1 отправляется в целые числа=7+1=8, а в дробях остается остаток 5\7
ответ:8 5\7
2)9-4=5
1\7-5\14=2\14-5\14=-3\14
5*14\14-3\14=70\14-3\14=67\14
67 разложим на множители=11+4*14\14 и сократим 14 и 14. Осталось 15\14, 15 больше 14, значит делим 14 на 14=1, осталось 1, единица отправляется в целые=5+1=6 и осталось 11\14.
ответ:6 11\14.
но я не очень уверенна насчет 2.