М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
visaenko1974
visaenko1974
05.05.2022 16:42 •  Математика

Решите с №1 я задумал число прибавил к нему 46 сумму разделил на 8 и получил 72 какое число я задумал? №2 я задумал число умножил его на 14 полученный результат увеличил на 18 и получил 74 найди задуманное число №3 разделите 35 на две части так чтобы одна из них была на 15 больше другой №4 разделите 27 на две части так чтобы одна из них была на 13 больше другой №5 разделите 39 на две части так чтобы одна из них была на 21 меньше другой !

👇
Ответ:
Абдулjazair
Абдулjazair
05.05.2022
1) x+46/8=72; x+46=576; x=530. 2) 14x+18=74; 14x=46; x=4. 3) x+15+x=35; 2x=20; x=10. 4)x+13+x=27; 2x=14; x=7. 5) x-21+x=39; 2x=60; x=30.
4,4(43 оценок)
Ответ:
malygin73rus
malygin73rus
05.05.2022
1)72*8-46=530
2)(74-18):14=4
3)10+25=35
х+х+15+35
2х+15=35
2х=20
х=10
4)7+20
х+х+13=27
2х+13=27
2х=14
х=7
5)9+30
х+х+21+39
2х+21=39
2х=18
х=9
4,7(64 оценок)
Открыть все ответы
Ответ:
Vitalihka
Vitalihka
05.05.2022

2 4

Объяснение:

1) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых.

ABCD — параллелограмм, если

AB ∥ CD, AD  ∥ BC.

Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников.

Например, это могут быть пары треугольников

1) ABC и CDA,

2) BCD и DAB,

3) AOD и COB,

4) AOB и COD.

2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD.

3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны.

Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD).

Для этого можно доказать равенство одной из тех же пар треугольников.

4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны.

Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD.

Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB.

Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать.

Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам.

4,6(90 оценок)
Ответ:
РоузХз
РоузХз
05.05.2022

Пошаговое объяснение:

) Четырехугольник является параллелограммом по определению, если у него противолежащие стороны параллельны, то есть лежат на параллельных прямых. ABCD — параллелограмм, если AB ∥ CD, AD ∥ BC. Для доказательства параллельности прямых используют один из признаков параллельности прямых, чаще всего — через внутренние накрест лежащие углы. Для доказательства равенства внутренних накрест лежащих углов можно доказать равенство пары треугольников. Например, это могут быть пары треугольников 1) ABC и CDA, 2) BCD и DAB, 3) AOD и COB, 4) AOB и COD. 2) Четырехугольник является параллелограммом, если у него диагонали в точке пересечения делятся пополам. Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AO=OC, BO=OD. 3) Четырехугольник является параллелограммом, если у него противолежащие стороны параллельны и равны. Чтобы использовать этот признак параллелограмма, надо сначала доказать, что AD=BC и AD ∥ BC (либо AB=CD и AB ∥ CD). Для этого можно доказать равенство одной из тех же пар треугольников. 4) Четырехугольник — параллелограмм, если у него противоположные стороны попарно равны. Чтобы воспользоваться этим признаком параллелограмма, нужно предварительно доказать, что AD=BC и AB=CD. Для этого доказываем равенство треугольников ABC и CDA или BCD и DAB. Это — четыре основных доказательства того, что некоторый четырехугольник — параллелограмм. Существуют и другие доказательства. Например, четырехугольник — параллелограмм, если сумма квадратов его диагоналей равна сумме квадрату сторон. Но, чтобы воспользоваться дополнительными признаками, надо их сначала доказать. Доказательство с векторов или координат также опирается на определение и признаки параллелограмма, но проводится иначе. Об этом речь будет вестись в темах, посвященных векторам и декартовым координатам

так вроде

4,5(8 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ